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Abstract

Autism spectrum disorder (ASD) is associated with atypical brain development. However, the phenotype of regionally
specific increased cortical thickness observed in ASD may be driven by several independent biological processes that
influence the gray/white matter boundary, such as synaptic pruning, myelination, or atypical migration. Here, we propose
to use the boundary sharpness coefficient (BSC), a proxy for alterations in microstructure at the cortical gray/white matter
boundary, to investigate brain differences in individuals with ASD, including factors that may influence ASD-related
heterogeneity (age, sex, and intelligence quotient). Using a vertex-based meta-analysis and a large multicenter structural
magnetic resonance imaging (MRI) dataset, with a total of 1136 individuals, 415 with ASD (112 female; 303 male), and 721
controls (283 female; 438 male), we observed that individuals with ASD had significantly greater BSC in the bilateral
superior temporal gyrus and left inferior frontal gyrus indicating an abrupt transition (high contrast) between white matter
and cortical intensities. Individuals with ASD under 18 had significantly greater BSC in the bilateral superior temporal gyrus
and right postcentral gyrus; individuals with ASD over 18 had significantly increased BSC in the bilateral precuneus and
superior temporal gyrus. Increases were observed in different brain regions in males and females, with larger effect sizes in
females. BSC correlated with ADOS-2 Calibrated Severity Score in individuals with ASD in the right medial temporal pole.
Importantly, there was a significant spatial overlap between maps of the effect of diagnosis on BSC when compared with
cortical thickness. These results invite studies to use BSC as a possible new measure of cortical development in ASD and to
further examine the microstructural underpinnings of BSC-related differences and their impact on measures of cortical
morphology.

Key words: autism spectrum disorder, cerebral cortex, microstructure, myelin, tissue contrast

Introduction
Neuroimaging studies of autism spectrum disorder (ASD) have
repeatedly observed early increases in cortical thickness (Anag-
nostou and Taylor 2011; Courchesne et al. 2011; Hazlett et al.
2017; Park et al. 2018; Bedford et al. 2020) and altered structural
and functional connectivity in individuals with ASD, particu-
larly early in life (Just et al. 2012; Rudie et al. 2012; Hahamy
et al. 2015). The early developmental period, which is coincident
with ASD-onset, is a particularly sensitive time with respect to
neuronal migration and cortical myelination. Indeed, neuronal
migration disruptions from the ventricular and subventricular
zones during early neocortex development have been observed
in ASD (Huguet et al. 2013; Pinto et al. 2014; Reiner et al. 2016),
potentially leading to the presence of supernumerary neurons
proximal to the gray/white matter boundary. Additionally, mat-
urational abnormalities of intracortical myelin, a key cortical
maturational feature (Grydeland et al. 2013; Deoni et al. 2015),

have been associated with ASD (Zikopoulos and Barbas 2010;
Canali et al. 2018; Graciarena et al. 2018). This developmen-
tal variation may underlie measures seeking to capture so-
called blurring at the interface of the cortex and the under-
lying superficial white matter, as measured using structural
MRI (Andrews et al. 2017; Bezgin et al. 2018; Mann et al. 2018;
Norbom et al. 2019). Despite advances in ASD research gen-
erated by studying the ratio of the tissue intensities between
these two compartments, there are limitations that may com-
plicate the interpretation of this measure as an index of corti-
cal microstructure. Firstly, the ratio of intensities between the
tissue classes is dependent on the placement of the boundary
that separates them. However, the boundary placement may be
influenced by signal ambiguity that arises from a less defined
gray/white matter boundary, thereby potentially confounding
the measurement of interest. Further, histological studies have
shown that more convex regions such as gyral crowns are more
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myelinated in deeper cortical layers compared with concave
regions, such as sulcal folds (Bok 1959; Sereno et al. 2013); thus
measures of cortical microstructure are negatively correlated
with cortical curvature, as T1-relaxation times are observed to
be higher in gyral crowns and lower in sulcal folds (Sereno et al.
2013; Waehnert et al. 2016). In ASD, microstructural measure-
ments obtained using the standard ratio of tissue intensities
may be confounded by the well-characterized group differences
in gyrification and curvature (Kohli et al. 2018; Libero et al.
2019).

Here, we propose to partly overcome these limitations using
our newly developed metric, boundary sharpness coefficient
(BSC), defined as the growth rate parameter of a sigmoid curve
fit to the cortical intensity profile running perpendicular to
the boundary surface (inspired by Avino and Hutsler 2010).
Using this new measure that potentially reflects perturbations
to neuronal migration and/or intracortical myelination, we per-
formed a large-scale analysis using images collected from mul-
tiple acquisition sites and analyzed them with a meta-analytic
technique (Bedford et al. 2020). In light of previous findings
from our group (Bedford et al. 2020) and others (Anagnostou
and Taylor 2011; Courchesne et al. 2011; Schuetze et al. 2016;
Hazlett et al. 2017) of increased cortical thickness in ASD, we
sought to further examine if previous studies of cortical thick-
ness increases in ASD may have been influenced by cortical
boundary abnormalities.

Given results from previous neuroimaging and histological
studies (Avino and Hutsler 2010; Andrews et al. 2017; Bezgin
et al. 2018; Mann et al. 2018), we expected to find a greater
degree of cortical blurring in individuals with ASD relative to
typically developing individuals, or a decrease in BSC. Since
T1w intensity is thought to reflect underlying myeloarchitecture
more so than cytoarchitecture (Eickhoff et al. 2005), blurring may
arise from differences in intracortical myelination: an increase
in myelin content (and of T1w signal) in the lower layers of the
cortex would appear in T1w MRI as a more blurred transition
in intensity moving from gray to white matter. An alternative
process that may increase cortical blurring in ASD is neuronal
migration. Neuronal migration defects are predicted to result
in supernumerary neurons in the white matter compartment
directly below the cortex (Chun and Shatz 1989; Avino and
Hutsler 2010; Andrews et al. 2017), which would also result in
a greater degree of blurring captured with BSC.

Another goal of this study was to examine the influence of
clinical heterogeneity on BSC. Based on the previous studies of
cortical anatomy, we expected age-related differences in BSC
to be greatest in younger ASD individuals (Khundrakpam et al.
2017; Bedford et al. 2020), to vary by sex (Irimia et al. 2017;
Zeestraten et al. 2017; Greenberg et al. 2018; Lai et al. 2015; Lai
et al. 2017) and full-scale IQ (FIQ) (Lotspeich et al. 2004; Bedford
et al. 2020).

Materials and Methods
Study Participants

Data included here were acquired from previous studies by the
Hospital for Sick Children (Canada), the Cambridge Family Study
of Autism (UK), and the UK Medical Research Council Autism
Imaging Multicentre Study (UK MRC AIMS). We also included
publicly available data from the Autism Brain Imaging Data
Exchange (ABIDE) I and II datasets (di Martino et al. 2014, 2017)
(Tables 1 and 2). All data used in this study were preprocessed

by SB for analysis in Bedford et al. (2020), with an original sam-
ple size of 3145 participants (1415 individuals with ASD (1165
male/250 female) and 1730 controls (1172 male/558 female), aged
2–65 years. Sample characteristics (including image processing,
and which subjects were excluded due to poor motion or seg-
mentation quality) are equivalent between studies, with the
exception of the NIMH site, which was not included in this study
because the partial volume effects from its lower resolution
would compromise the accuracy of BSC measurement. Quality
control methodology is outlined in detail in a recent manuscript
from our group (Bedford et al. 2020). Supplementary materials
of that work (Supplementary Methods 2. Quality control [QC]
and site elimination; 3. Image processing; 7. Quality control
analysis) provide detailed accounts of our quality control choices
for both the raw and processed data. In total, after segmentation
quality control and motion quality control, there remained 1136
subjects: 415 with ASD (303 male/112 female) and 721 controls
(438 male/283 female).

Image Processing

Data were preprocessed using the minc-bpipe-library pipeline,
including N4 bias field inhomogeneity correction (Tustison et al.
2010). Data were then processed through the CIVET 1.1.12 corti-
cal segmentation and cortical thickness pipeline, which gener-
ated gray/white and pial surfaces and transformed subject brain
volumes into standard MNI space (Ad-Dab’bagh et al. 2006). All
intensity sampling and surface generation was performed in
standard space.

BSC Calculation

For each of the 77 212 vertices (which exclude all vertices on
the midline wall) on the cortical surface of each subject, signal
intensity was measured at 10 surfaces that span the region
around the gray/white boundary. Together, the 10 intensity
samples derived from these new surfaces cover the bottom
quarter of the cortex (the quarter that interfaces with the
gray/white boundary) and a small portion of white matter below
the gray/white boundary (Fig. 1).

Gray matter surfaces were created at increasing percentile
fractions of the cortical thickness (0%, 6.25%, 12.5%, 18.75%, 25%,
50%), from the boundary to the pial surface (Fig. 1A,B). New white
matter surfaces were generated at the same distance from the
gray/white boundary surface as the gray matter surfaces, but in
the direction of the white matter, with the exception of the white
matter equivalent of the 50% gray matter surface, which was
not included because it crossed into neighboring cortex in thin
gyral crowns at certain vertices. See Supplementary Methods
section S2 “Surface generation” for more details. A sigmoid curve
was then fit to the 10 sample points using a nonlinear least
squares estimator (Fig. 1C); see Supplementary Methods section
S3 “Model fit” for more details.

Sampled intensities at each vertex and their distance along
the axis perpendicular to the gray matter boundary surface were
input to a nonlinear least-squares estimator to fit a sigmoid
function:

profilei = a + ek + −ek

1 + e−BSCi (x−d)

The d parameter reflects the translation of the sigmoid along
the x-axis, where x is a vector of the displacement along the
axis that runs orthogonal to the boundary, increasing toward
the pial surface, parameter a translates the sigmoid along the
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Table 1 Subject demographics of the cohort under study

Subjects by site
before QC (and after
QC)

Age (years)
[median]

Total (after
QC)

Female ASD
(after QC)

Male ASD
(after QC)

Female control
(after QC)

Male control
(after QC)

FIQ [median]

ABIDE I—17 sites (4
sites)

6–64 [14.7]
(6–58 [16.9])

1101 (263) 64 (14) 466 (89) 99 (38) 472 (122) 41–148 [109]
(69–148 [110])

ABIDE II—16 sites (4
sites)

5–64 [11.7]
(5–34 [11.1])

1044 (292) 73 (25) 414 (82) 175 (69) 382 (116) 49–149 [112]
(49–144 [110])

SickKids Hospital,
Toronto

4–65 [14.0]
(4–49 [14.8])

521 (321) 25 (18) 106 (62) 194 (117) 196 (124) 69–149 [111]
(69–149 [112])

Cambridge Family
Autism Study

12–18 [14.7]
(12–18 [15.0])

96 (52) 17 (12) 39 (15) 20 (14) 20 (11) 73–146 [108]
(82–139 [107])

UK MRC Autism
Imaging Multicentre
Study (University of
Cambridge, King’s
College London)

18–52 [25.7]
(18–52 [27.7])

253 (208) 54 (43) 72 (55) 54 (45) 73 (65) 73–137 [115]
(73–137 [117])

Total before QC 2–65 [13.8] 3015 233 1097 542 1143 41–149 [111]
Difference between
sites (ANOVA/X 2;
total sample)

F(29,
2913) = 101.9,
P < 0.001

X 2(87, N = 3015) = 544,35, P < 0.001 F(29,
2893) = 7.985,
P < 0.001

Total after QC 2–65 [14.0] 1136 112 303 283 438 49–149 [112]
Difference
(ANOVA/X2; QC’d
sample)

F(9,
1126) = 118.1,
P < 0.001

X 2(27, N = 1136) = 148.2, P < 0.001 F(9,
1126) = 0.94,
P = 0.49

Note: Group differences in age, sex distribution, and FIQ were also examined using t-tests (for continuous variables) and chi-squared tests (for categorical variables).

Table 2 Subject demographics broken down by ABIDE I and II site

Subjects by ABIDE
site before QC (and
after QC)

Age (years)
[median]

Total (after
QC)

F-ASD (after
QC)

M-ASD (after
QC)

F-Ctl (after
QC)

M-Ctl (after
QC)

FIQ [median]

Kennedy Krieger
Institute (KKI; ABIDE
I&II)

8–13 [10.3]
(8–13 [10.4])

256 (148) 19 (11) 58 (21) 65 (45) 123 (71) 63–143 [113]
(69–143 [114])

Ludwig Maximilians
University Munich
(MAX MUN; ABIDE I)

7–58 [26.0]
(7–58 [29.5])

57 (38) 3 (3) 21 (14) 4 (4) 29 (17) 79–133 [112]
(93–133 [112])

New York University
(NYU; ABIDE I & II)

5–39 [10.9]
(5–39 [12.1])

289 (179) 19 (10) 135 (74) 28 (19) 107 (76) 67–148 [109]
(67–148 [109])

Oregon Health and
Science University
(OHSU; ABIDE I & II)

7–15 [11.0]
(8–15 [11.0])

121 (97) 7 (5) 43 (33) 29 (25) 42 (34) 69–140 [115]
(69–136 [114])

San Diego State
University (SDSU;
ABIDE I & II)

7–18 [13.8]
(8–18 [14.4])

94 (45) 8 (6) 39 (16) 8 (3) 39 (20) 66–141 [105]
(66–139 [104])

University of
Michigan (UM; ABIDE
I)

8–28 [14.0]
(9–28 [15.8])

145 (55) 10 (4) 58 (17) 18 (12) 59 (22) 76–147 [108]
(78–147 [110])

T1 intensity, parameter k reflects the height of the sigmoid,
and parameter BSCi reflects the growth rate (steepness) of the
sigmoid.

BSC at each vertex (BSC parameter of the sigmoid curve)
was extracted from the estimated sigmoid curve (Fig. 1D),
where a higher BSC reflects greater boundary “sharpness,”
or a faster transition in intensity moving from gray matter
to white matter (effectively a measure of contrast at the
gray/white matter surface, with higher BSC reflecting high
contrast which we take to mean a bigger difference between

the microstructural composition of tissue compartments).
See Supplementary Fig. S5 for representative sigmoid fits and
associated BSC parameters and Supplementary Fig. S6 for a
spatial distribution of model convergence failures prior to
spatial smoothing. These values were then log-transformed
and smoothed with a 20-mm full-width half-max (FWHM)
smoothing kernel to reduce the effect of noise and simulate
a Gaussian distribution. No smoothing was applied to the
sampled intensity values prior to the model fit. Smoothing
kernels at 10 mm (Mann et al. 2018; Norbom et al. 2019), 20 mm
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Figure 1. Intensity sampling and sigmoid fit method used to calculate BSC for each vertex. At each vertex, the T1w image intensity was measured at 10 cortical surfaces

surrounding the gray/white boundary, including the mid-surface, gray/white boundary surface, and a total of eight newly generated gray and white surfaces equally
spaced apart (A, B). A sigmoid curve (Equation 1) was fit to the 10 sample points (C) and parameter BSC, reflecting the sigmoid growth rate (D), was log-transformed to
create the measure that is the BSC at that vertex. Higher BSC values reflect a quicker transition between gray and white matter and a less blurred cortical boundary,
whereas lower BSC values reflect a slower transition between gray and white matter and a more blurred cortical boundary (D). The tissue contrast ratio was calculated

by dividing the intensity sampled at the gray 25% surface by the intensity sampled at the white 25% surface.

(Bezgin et al. 2018), and 30 mm (Salat et al. 2009; Uribe
et al. 2018) FWHM have been used in prior studies inves-
tigating the tissue contrast ratio. Here, a 20-mm kernel
was used with the a priori hypothesis that effects would
be present at this intermediate kernel width. The analysis
of main effect was repeated with a smoothing kernel of
10 mm FWHM. Values were then resampled to a common
surface mesh to enable cross-subject comparisons (Lerch and
Evans 2005).

By measuring T1 signal at multiple distances on either side
of the gray/white boundary and fitting an adequately flexible
sigmoid curve to the measurements, BSC is theoretically able
to capture cortical blurring wherever it occurs relative to the
segmented boundary and thus avoids the circular boundary
placement problem mentioned in the Introduction. Finally,
given that BSC maps also correlated with mean curvature

(Supplementary Fig. S2B) in certain parts of the cortex, BSC
values were further residualized for mean curvature at the
vertex-wise level across all subjects within each site in standard
space (Sereno et al. 2013).

Relationship between In-Scanner Motion and BSC

In order to assess the potential impact of motion on data that
passed quality control, we obtained motion parameters from
functional magnetic resonance imaging (fMRI) data in two sites
(ABIDE I KKI; ABIDE II OHSU), which include subjects aged
7–15, a demographic for whom motion is traditionally higher
overall. Though an indirect measure of T1 motion, fMRI
realignment parameters acquired during the same session
have been shown to correlate with anatomical scan motion
(Alexander-Bloch et al. 2016). Linear regression was performed
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at each lobe (frontal, temporal, parietal, occipital, cingulate) to
estimate the effect of in-scanner motion on BSC (Supplementary
Methods S7).

Code Availability

Code for all processing steps, including surface generation and
BSC calculation, is publicly available on the CoBrALab GitHub:
https://github.com/CoBrALab/BSC.

Statistical Analysis of BSC

Data were amassed from multiple sites in order to be sufficiently
powered to analyze sources of heterogeneity in ASD. However,
analyzing multiple sites presents the challenge of site-specific
confounds, such as scanner model, scan acquisition protocols,
and sample demographics. These limitations were addressed by
the prospective meta-analysis technique, where each site was
treated as a separate study, and the results were pooled across
sites to determine significance at each vertex (Thompson et al.
2014; van Erp et al. 2016; Bedford et al. 2020). Meta-analyses were
performed at a vertex-wise level (i.e., performing regressions at
each vertex across the brain). Specifically, within each site, for
each vertex across the brain where BSC was estimated, a linear
regression model was performed to derive per-site Cohen’s d
effect sizes for the main effect of each variable of interest. Then,
the final effect size representing the contribution of all sites
was calculated in a random-effects meta-analysis (Borenstein
et al. 2010) using the metafor package in R 3.4.0 (https://www.r-
project.org/). See Supplementary Methods section S5 “Statistical
Models” for more details. How models were chosen to study
the impact of age, sex, and IQ are further detailed below. Ver-
texwise P-values obtained from the meta-analyses described in
Figs 3-5 were adjusted for multiple comparisons (i.e., all vertices
of all analyes performed) were corrected for multiple compar-
isons using the false discovery rate (FDR) correction, which con-
trols the proportion of null hypotheses that are falsely rejected
(Genovese et al. 2002).

Akaike Information Criterion Analysis of Variable
Importance

The importance of age (linear term), age (quadratic term), sex,
and FIQ were examined by using a vertex-wise Akaike Informa-
tion Criterion (AIC) analysis. The AIC is a measure that assesses
the relative quality of statistical models, where a model with the
lowest AIC is considered the best fit for the data (Mazerolle 2006).
AIC takes into account both accuracy and parsimony, because
it carries a penalty for increasing the number of free parame-
ters in the model. Within each site, the AIC was calculated at
each vertex for the linear regression model without the variable
of interest (e.g., diagnosis only), with the variable of interest
(e.g., age + diagnosis) and with its interaction with diagnosis
(e.g., age + diagnosis+age∗diagnosis). The percentage of sites for
which each of the above models was the best-fitting model,
according to AICc (for small sample sizes), was calculated for
each vertex as a weighted average based on site size (number of
subjects scanned at each site after QC). Supplementary Fig. S7
displays these results for age, Supplementary Fig. S8 for sex, and
Supplementary Fig. S9 for FIQ.

Based on the comparison of the models using AIC, it was
determined that age (but not sex or FIQ) was an important
explanatory variable at a substantial proportion of vertices

across the brain for BSC, thus motivating our investigation
into how this factor influences BSC in ASD. See Supplementary
Methods section S5 “Statistical Models” for more details.

Age-Focused Analyses

The impact of age was examined by stratifying subjects by
age, performing separate meta-analyses in subjects who were
18 years old and below, and in subjects who were above 18 years
old, including sex and FIQ as covariates. Additionally, an age-
centered analysis was performed to assess the trajectory of
group differences by shifting the age at which group differences
are assessed by 4-year intervals. This type of analysis allows for
the interpretation of group differences at various 4-year cross-
sections without splitting the dataset into age ranges, maximiz-
ing statistical power. The Cohen’s d effect size for the main effect
of diagnosis was calculated for each site in each model (one for
each age interval) and pooled in a random-effects meta-analysis
in the same manner as the case–control comparisons.

Associations between BSC and ASD
Symptoms/Characteristics

Since consistent measures of ASD symptoms or characteristics
were not available across all sites, analyses were performed on
a subset of individuals who had the same clinical measures. We
chose the measure which had the largest number of individuals
available, which was the ADOS-2 Calibrated Severity Scores (CSS)
to examine overall symptom severity (N = 172; also conducted
separately in males [N = 139] and females [N = 33]). The analysis
of the relationship between BSC and severity measures (as mea-
sured by ADOS-2 CSS) was performed by conducting a multiple
regression analysis, calculating the semipartial correlation of
the ADOS-2 scores with BSC at each vertex, per site, with age,
sex, and FIQ included in the model, in individuals with ASD
only. The semipartial correlation was then pooled across sites
in a random effects meta-analysis, in the same fashion as the
Cohen’s d effect size in a typical meta-analysis (Bedford et al.
2020).

Assessing Spatial Overlap between BSC and Cortical
Thickness Maps

The spatial correspondence between maps of the effect size of
diagnosis on BSC and the effect size of diagnosis on cortical
thickness was determined using a “spin test” (Alexander-Bloch
et al. 2018), which generates null estimates of overlap by apply-
ing random rotations to spherical projections of a cortical sur-
face. The correlation between the two original spatial maps is
compared with the Pearson’s correlation coefficient measured
between one original spatial map and the other map’s rotated
permutations. Maps of cortical thickness were developed in
(Bedford et al. 2020) from a near-identical dataset (excluding the
NIMH dataset here).

Results
The Tissue Intensity Ratio Correlates with Mean
Curvature

To determine the extent to which tissue intensity ratio may be
influenced by cortical curvature, we assessed the correlation
between mean curvature and the tissue intensity ratio (see
Supplementary Methods section S4 “Tissue intensity ratio” for
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methods). In a vertex-wise single-subject analysis, we found
that the tissue intensity ratio was lower in gyri compared with
sulci (Supplementary Fig. S1). Furthermore, in a cross-subject
analysis to determine in which areas of the brain this relation-
ship is present, we found a negative correlation between the
tissue intensity ratio and mean curvature for most vertices in
the brain (Supplementary Fig. S2A,C,D), including vast areas of
the frontal, parietal, and occipital lobes. These results are consis-
tent with the hypothesis that the impact of curvature on cortical
T1w intensity extends to the tissue intensity ratio and calls for a
measure of cortical contrast between the gray and white matter
that is less susceptible to bias by other cortical features. When
assessed for its relationship to curvature, we found that BSC
correlated with mean curvature in regions of the anterior frontal,
parietal, and temporal lobes (Supplementary Fig. S2B) and did
not correlate in any regions after regressing the values against
mean curvature at the vertex level.

Average BSC Map Recapitulates T1/T2 Ratio Map

We observed regional differences in mean BSC across healthy
individuals ages 22–35 within the Sick Kids (Toronto) cohort
(Fig. 2A), with the lowest mean BSC in areas such as the motor-
somatosensory strip in the central sulcus, the visual cortex in
the occipital lobe, and in early auditory areas in the Sylvian
fissure, matching areas that were reported to contain the heav-
iest intracortical myelination as measured by the T1/T2 ratio in
Glasser et al. (2011).

Normative Effect of Age and Sex on BSC in Control
Subjects

In order to contextualize diagnostic group differences in BSC, we
performed a vertexwise analysis of the main effects of age, age
squared, and sex on BSC across all control individuals in the Sick
Kids (Toronto) cohort (165F/149M; aged 4–65) (Supplementary
methods section S6). Main effects of age on BSC were significant
across the cortex with a negative relationship in association
cortices and positive relationship in sensory areas. Likewise,
age-squared was negatively related to BSC in association
cortices (an inverted U-shaped relationship), and positively
related in primary sensory areas (U-shaped relationship)
(Supplementary Fig. S3A,B). Significant sex differences were
only observed in the bilateral medial temporal cortices where
males have higher BSC than females (Supplementary Fig. S3C).

Motion Does Not Correlate with BSC

Multiple regression between average BSC and in-scanner
motion (as estimated by Framewise Displacement (Power
et al. 2012); see Supplementary Methods S7) did not provide
evidence for a relationship between BSC and in-scanner motion
(Supplementary Fig. S4; Supplementary Table S1).

Greater BSC in Individuals with ASD

We observed regions of significantly greater BSC in individu-
als with ASD compared with controls in the bilateral superior
temporal gyrus, inferior temporal gyrus, and left inferior frontal
gyrus (<5% FDR, peak Cohen’s d = 0.36) (Fig. 2B), corresponding to
a faster transition from cortical gray matter to white matter rela-
tive to controls. Effect sizes varied moderately between sites but
were mostly positive (Fig. 2C, Supplementary Fig. S10). The anal-
ysis of the main effect of ASD was repeated with a smoothing

kernel of 10 mm FWHM, where the pattern of group differences
is similar, and more extensive (Supplementary Fig. S11).

Age-Specific Patterns of Boundary Alterations

In the age-stratified analysis, individuals with ASD above and
below 18 both showed significantly greater BSC than their typi-
cally developing counterparts (Fig. 3A), though these group dif-
ferences showed age-specific patterning and effect sizes, and
the main effect of diagnosis was stronger in the age group over
18. Individuals with ASD under 18 had significantly greater BSC
in the bilateral superior temporal gyrus and right postcentral
gyrus, with a peak Cohen’s d of 0.41 (Fig. 3A). Individuals with
ASD over 18 had significantly increased BSC in the bilateral
precuneus and superior temporal gyrus, with a peak Cohen’s d
of 0.62 (Fig. 3A). In the age-centered analysis, which examined
group differences at specific ages, group differences were great-
est between the ages of 12 and 20 in the right superior tempo-
ral gyrus and left inferior temporal gyrus (Fig. 3B,C,D). Thresh-
old effects were not responsible for the pattern of differences
between the two age groups (Supplementary Fig. S12A).

Sex-Specific Boundary Alterations

A sex-focused analysis on group differences in BSC was
performed (Supplementary Methods S8). In both the male
and female subgroups, individuals with ASD had significant
increases in BSC, but these increases were observed in different
brain regions in males and females and with larger effect sizes
in the female group (Supplementary Fig. S14A,B). Females with
ASD had significantly greater BSC in the bilateral superior
parietal gyrus and superior temporal gyrus, with a peak Cohen’s
d of 0.63 (Supplementary Fig. S14A). Males with ASD displayed
significantly greater BSC in the bilateral inferior temporal
gyrus and left inferior frontal lobe, with a peak Cohen’s d
of 0.32 (Supplementary Fig. S14B). Threshold effects were not
responsible for the pattern of differences between the sexes
(Supplementary Fig. S12B).

Minimal Correlation between BSC and ASD Severity
Measures

We observed a significant positive correlation between BSC and
ADOS-2 CSS in individuals with ASD in the right medial tem-
poral pole (Fig. 4A). Given our findings of sex-specific regions
of BSC differences in subjects with ASD, we explored the rela-
tionship between BSC and ASD severity separately in males and
females. In the female group, we found a significant positive
association between BSC and ADOS-2 CSS in the left parietal lobe
(Fig. 4B). No correlations between severity score and BSC were
observed in the male-only subset.

Overlap between Maps of Diagnostic Effect on Cortical
Thickness and BSC

We observed a significant overlap between the maps of Cohen’s
d effect size of diagnosis on BSC and the map of Cohen’s d
effect size of diagnosis on CT (P < 0.01) (Fig. 5A,B), as well as
between the maps of FDR-corrected q-values (P < 0.01) (Fig. 5C,D,
Supplementary Fig. S13).
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Figure 2. Diagnostic group comparisons of BSC. (A) Average BSC map versus average T1/T2 ratio myelin map from Glasser et al. (2011). Olafson et al. BSC map depicts
the average BSC values across control subjects aged 22–35 for a single site (Sick Kids) for correspondence with the HCP dataset used by Glasser et al. (2011) to derive
T1/T2 ratio maps. The top row displays lateral views (left hemisphere on the left, right hemisphere on the right), and the bottom row displays medial views (with
midline vertices masked out), for each map. (B) Individuals with ASD had significantly higher BSC measures (<5% FDR, peak Cohen’s d = 0.38) in the bilateral superior

temporal gyrus, inferior temporal gyrus, and left inferior frontal gyrus. (C) Forest plot displaying site-specific effect sizes at a peak vertex in the left frontal gyrus
represented by an asterisk in (B).

Discussion

In this study, we employed a vertex-wise meta-analysis on a
large multisite dataset to investigate BSC in ASD, finding signifi-
cant group-level increases in BSC in lateral frontal and temporal
regions as well as sex-specific and age-specific patterns of BSC
increases in individuals with ASD. As BSC is parameterized to
capture cortical blurring which may be a product of differences
in neural migration and intracortical myelination, there are sev-
eral considerations for interpreting our observation of increased
BSC in ASD. Neuronal migration defects are predicted to result
in supernumerary neurons in the white matter compartment

directly below the cortex (Chun and Shatz 1989; Avino and
Hutsler 2010; Andrews et al. 2017). In previous neuroimaging
studies examining cortical blurring at the gray/white boundary
using the tissue intensity ratio, the presence of ectopic neurons
is thought to be captured by an intensity differential that is
lower in individuals with ASD (Andrews et al. 2017). Thus, our
finding of a greater intensity difference (as indexed by greater
BSC) between cortex and white matter is unlikely to reflect
differences in neuronal migration.

Since T1w intensity is thought to reflect underlying myeloar-
chitecture more so than cytoarchitecture (Eickhoff et al. 2005),
BSC may also reflect intracortical myelination: a reduction of
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Examining the Boundary Sharpness Coefficient Olafson et al. 9

Figure 3. Age-stratified and age-centered analyses. Individuals under 18 with ASD had significantly higher BSC measures in the bilateral superior temporal gyrus as
well as the left precentral gyrus (<5% FDR, peak Cohen’s d = 0.41) (A). Individuals over 18 with ASD showed significantly increased BSC in the bilateral precuneus and

superior temporal gyrus (<5% FDR, peak Cohen’s d = 0.62). (B) For the age-centered analysis, group differences in BSC were greatest between the ages of 12 and 20 in
the right superior temporal gyrus and left inferior temporal gyrus. (C) Zoom of the left superior temporal lobe (top) and right inferior temporal lobe (bottom) displaying
qvalues between 1% and 5% FDR (same colormap as in B). (D) Plot of BSC across age in a single site (Toronto) at vertex highlighted with a white asterisk in A.
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Figure 4. Relationship between BSC and ADOS-CSS. Across all subjects with ASD with severity scores, ADOS-CSS was positively correlated with BSC, shown for a peak

vertex in the right medial temporal gyrus (A). Correlations between ADOS-CSS and BSC were also observed in the female-only group in the left parietal lobe (B).

myelin content (and presumably, of T1w signal) in the lower
layers of the cortex would appear in T1w MRI as a sharper
transition in intensity moving from gray to white matter. This
assumption is supported by the general agreement between the
group-average BSC map (Supplementary Fig. S8) and the intra-
cortical myelin map derived using the T1w/T2w ratio by Glasser
et al. (2011) and is further supported by evidence from studies
suggesting altered intracortical myelination in ASD, including
genetic (Richetto et al. 2017) and molecular (Canali et al. 2018;
Lee et al. 2019) studies, preclinical mouse models (Graciarena
et al. 2018; Shen et al. 2018), and postmortem histology (Zikopou-
los and Barbas 2010). Furthermore, age-related effects of BSC
in healthy controls (Supplementary Fig. S3) recapitulate norma-
tive developmental patterns of intracortical myelination. The
results suggest that BSC follows an inverted U shape trajectory
across most of the cortex, which is consistent with studies of
intracortical myelin, which describe cortical development over
the life span as occurring in phases: an early maturation phase
that lasts into adulthood, followed by a stable period, and then

a decline of intracortical myelin (Rowley et al. 2017; Grydeland
et al. 2019). Here, across most of the cortex, BSC trajectories
follow a similar pattern—an early decrease in BSC (increase in
myelin) during adolescence, and then a plateau, and then a
moderate increase in BSC (decrease in myelin).

Mounting evidence from diffusion imaging and resting state
fMRI studies support the characterization of ASD as a connec-
topathy, or a brain network disorder. Since our proposed mea-
sure is parameterized to capture myelination in the lower layers
of the cortex (a region through which fibers that connect distant
brain regions pass), the higher BSC observed in ASD is supported
by studies that find reduced long-range cortical connectivity
(Kikuchi et al. 2015; O’Reilly et al. 2017) and thalamo-cortical
connectivity (Nair et al. 2013; Tomasi and Volkow 2019) in ASD.
As such, the contribution of myelination is increasingly rele-
vant to understanding the neurodevelopmental mechanisms of
ASD.

Two neuroimaging studies to date investigated boundary
microstructure in ASD using a different metric called the tissue
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Figure 5. Cohen’s d effect size maps of BSC (A) and cortical thickness (B, used with permission from Bedford et al. 2020). Spatial correspondence assessed by the Pearson
correlation coefficient in a permutation-based “spin-test” analysis between BSC and cortical thickness is demarcated in red (C) was significant (P = 0.00; P < 0.001 as
per the software output) with 1000 null spatial permutations. FDR-thresholded q-value maps of significant increases in BSC and increases in cortical thickness in
individuals with ASD (D).

intensity ratio, reporting lower tissue intensity ratio in ASD
which may indicate greater intracortical myelination or the
presence of supernumerary neurons in the superficial white
matter compartment directly beneath the gray/white boundary
(Andrews et al. 2017; Mann et al. 2018; Norbom et al. 2019). This
discrepancy to the present findings could be due, in part, to
differences in preprocessing and analysis methods (particularly
the use of the tissue intensity ratio). The tissue intensity ratio
suffers from the ambiguity arising from the blurring around
the cortical boundary which, in turn, alters placement of the
gray/white boundary that serves as a reference point for the
component gray and white measurements. Additionally, the
present study uses a sample size that is considerably larger
than previous studies and is more suitably powered to detect
group differences in high-variability populations. Examining the
directionality in each of the forest plots reveals how different
studies may, indeed, yield different findings and how they may
be dependent on age range and demographic composition. The
data in the present study were rigorously filtered for motion and
image processing artifacts (Bedford et al. 2020), whereas quality
control procedures were not described in detail in previous
studies, making it difficult to assess the effect of motion or
inaccurate segmentation on reported results. It is possible that
measures of cortical blurring using the tissue intensity ratio in

previous ASD studies have been obscured by motion-induced
blurring of the gray-white matter boundary (Alexander-Bloch
et al., 2016; Reuter et al. 2015), especially considering individuals
with ASD are more likely to move during the scan than controls
(Pardoe et al. 2016; Bedford et al. 2020). It is also possible that fac-
tors such as age, sex, FIQ, and symptom severity are influencing
case–control differences in previous studies of cortical blurring
in autism (Lombardo et al. 2019). Therefore, we attempted to
determine the degree to which diagnostic differences in BSC are
modulated by these factors.

The male bias in ASD prevalence (3:1 males: females
diagnosed (Baxter et al. 2015) as well as sex differences in
behavior and key ASD-related phenotypes such as restrictive
and repetitive behaviors (Mandy et al. 2012; Knutsen et al.
2019) have spurred the investigation of neuroanatomical sex
differences in ASD (Lai et al. 2017). Given their scarcity, females
with ASD are a difficult population to recruit, and, as such, our
understanding of the modulating effect of sex on neuroanatomy
in individuals with ASD is relatively rudimentary. However,
this knowledge gap is beginning to narrow as a result of
efforts to curate large-scale publicly-available neuroimaging
datasets (Di Martino et al. 2014) and an increased awareness
of the importance of female representation in ASD studies
(Lai et al. 2015). By combining publicly-available datasets with
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several multicentre consortium datasets, we were able to
incorporate data from 117 females with ASD in this study. We
observed sex-specific patterns of BSC, where females with ASD
displayed higher BSC in the superior temporal and parietal lobes,
whereas males with ASD displayed a greater BSC in the inferior
temporal and frontal lobes. Sex-specific patterns of cortical
neuroanatomy in autism have recently been reported, in both
gross volumetric measures (Retico et al. 2016; Bedford et al.
2020) and altered connectivity (Irimia et al. 2017; Zeestraten
et al. 2017). The maximum effect size of diagnosis in the
female sample was almost twice as high as the effect size of
diagnosis observed in the male sample. BSC also correlated with
ADOS-CSS in the female-only sample. Taken together, these
findings support a differential neuroanatomical presentation of
autism in males and females.

Age is another factor that is known to modulate diagnostic
group differences. Though most brain differences in ASD have
been investigated in a child or adolescent population, there is
evidence that differences in brain anatomy related to ASD are
present even in adulthood (Ecker et al. 2013, 2012; Lazar et al.
2014). Intracortical myelination has shown to be ongoing even
past adolescence, with accelerated myelination until ∼30 years
of age, followed by a period of stability, and then a decrease
in myelination from the late 50s (Grydeland et al. 2013; Tullo
et al. 2019). Though our use of cross-sectional data limits our
interpretation of the age-centered results as being reflective of
developmental processes, the peak diagnostic group differences
observed in adolescence and adulthood may be the result of
reduced or protracted myelination in ASD relative to the rate of
myelination in typical development, as observed in postmortem
histology (Zikopoulos and Barbas 2010) and mouse models of
ASD (Ellegood et al. 2015; Graciarena et al. 2018).

Intracortical myelination has been shown to drive MRI-based
measures of cortical thickness in the visual cortex across devel-
opment (Natu et al. 2018), potentially by pushing the gray-white
matter boundary deeper into the cortex. In our analysis, we
found a significant spatial overlap between maps of the effect
size of diagnosis on BSC and the effect size of diagnosis on
cortical thickness (Bedford et al. 2020). These results suggest that
the neuro-phenotype of increased cortical thickness in ASD, as
observed in Bedford et al. (2020) and many other studies, may
be partially driven by lower levels of intracortical myelination in
ASD relative to controls. Moving forward, a longitudinal design
would allow us to determine in the same individual, the evolu-
tion of the pattern of BSC across development, and would allow
for relating patterns of BSC over time with respect to behaviors
and autism symptomatology. Additionally, since age may sub-
stantially moderate the pattern of sex differences, a longitudinal
framework would allow for a more precise investigation into this
time-sensitive relationship.

However, while cortical thickness differences observed in our
previous work (Bedford et al. 2020) correlate with autism severity
scores in many regions of the brain, we found minimal corre-
lations between BSC and ASD severity. This disparity suggests
that intracortical myelination may inflate MRI-based measures
of cortical thickness in ASD for several areas of the brain, but
the cortical overgrowth phenotype itself is driven by separate
biological processes (such as reduced synaptic pruning) that are
more clinically relevant to ASD severity. On the other hand,
deficits in intracortical myelination may be a neurobiological
hallmark of the disorder that does not alter ASD behavioral
severity beyond a certain point and thus does not correlate with
the ADOS-CSS score.

There are several limitations to this study. First, although our
BSC maps correspond well with established patterns of intracor-
tical myelination, the T1w intensity also reflects other biological
properties including water content, iron, and dendrite density
and therefore may reflect more than the degree of myelination
in the cortex (Stüber et al. 2014). Second, abnormalities in the
superficial white matter may also drive some of the changes
to BSC. Though a vertex-wise analysis of the intracortical or
superficial white matter intensities independently is precluded
by between-scanner intensity profile differences and by the
distorting effect of inhomogeneity gradients across images,
it would be possible to evaluate differences in normalized
intracortical intensities that have been scaled to the intensity of
a predetermined sample of white matter within each subjects’
brain. Finally, since the distance sampled in the white matter
is based on a percentage of the cortical thickness, the depth at
which white matter is measured varies between regions with
different cortical thicknesses.

Given these findings of increased BSC in individuals with
ASD, which may reflect the degree of myelination in the lower
layers of the cortex, it will be pertinent to investigate how
subcortical volume changes in ASD relate to BSC in cortical
sensory regions with high thalamic input (Uddin 2015; Schuetze
et al. 2016). Considering the importance of intracortical myelina-
tion on the fidelity of neural connections and the maintenance
of networks, these results may help us better understand the
cognitive and behavioral atypicalities seen in ASD. Finally, the
significant spatial correspondence observed between maps of
cortical thickness and of BSC calls for a reconsideration of what
biological phenomena may underlie the MRI-derived measures
of cortical thickness increases in autism.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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