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� EEG complexity was compared between adults with autistic spectrum conditions (ASC) and control par-
ticipants, whilst performing a social and a non-social task.
� The ASC group showed reduced complexity compared to the control group in both tasks, in parietal and
occipital regions of the cortex.
� Both groups had relatively greater EEG complexity for the social, compared to the non-social task.

a b s t r a c t

Objective: Intrinsic complexity subserves adaptability in biological systems. One recently developed
measure of intrinsic complexity of biological systems is multiscale entropy (MSE). Autism spectrum con-
ditions (ASC) have been described in terms of reduced adaptability at a behavioural level and by patterns
of atypical connectivity at a neural level. Based on these observations we aimed to test the hypothesis
that adults with ASC would show atypical intrinsic complexity of brain activity as indexed by MSE anal-
ysis of electroencephalographic (EEG) activity.
Methods: We used MSE to assess the complexity of EEG data recorded from 15 participants with ASC and
15 typical controls, during a face and chair matching task.
Results: Results demonstrate a reduction of EEG signal complexity in the ASC group, compared to typical
controls, over temporo-parietal and occipital regions. No significant differences in EEG power spectra
were observed between groups, indicating that changes in complexity values are not a reflection of
changes in EEG power spectra.
Conclusions: The results are consistent with a model of atypical neural integrative capacity in people with
ASC.
Significance: Results suggest that EEG complexity, as indexed by MSE measures, may also be a marker for
disturbances in task-specific processing of information in people with autism.
� 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Physiological complexity, comprising the presence of non-
random fluctuations over multiple time scales in the seemingly
irregular dynamics of physiological outputs (Freeman, 1992; Glass
and Mackey, 1992; Manor et al., 2010) is increasingly being recog-
nized as contributing a novel descriptive approach to the investiga-
tion of typical and pathological developmental or degenerative
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states (Costa et al., 2002, 2005; Fallani Fde et al., 2010; Ouyang
et al., 2010). Whilst the interpretation of the meaning of changes
in complexity varies according to the physiological parameters
studied and the developmental or clinical condition being investi-
gated, there is nevertheless increasing evidence that a variety of
pathological processes are associated with atypical and often, but
not always, reduced measures of physiological complexity (Escu-
dero et al., 2006; McIntosh et al., 2008; Kang et al., 2009; Istenic
et al., 2010; Manor et al., 2010; Mizuno et al., 2010; Takahashi
et al., 2010; Bosl et al., 2011). Regarding brain activity specifically,
electroencephalographic (EEG) activity provides fine temporal res-
olution, making it particularly suitable for investigating inherently
ed by Elsevier Ireland Ltd. All rights reserved.
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complex biological signals arising from brain systems regulated by
multiple sources interacting with each other over different time
scales, mechanisms, couplings and feedback loops (Bhattacharya
et al., 2005; Fallani Fde et al., 2010; Ouyang et al., 2010).

There are reasons to suspect that autism spectrum conditions
(ASC) may be associated with atypical patterns of brain complexity.
ASC are a set of pervasive neurodevelopmental conditions with on-
set in early childhood and a wide range of life-long signs and symp-
toms that suggest an association with atypical functioning at a
relatively profound level of brain functioning. Core features of ASC
include a restricted repetitive range of behaviours, interests and
activities; impairments in reciprocal social interactions; and quali-
tative disturbances in communication (American Psychiatric
Association, 2000). In addition to these characteristic social and cog-
nitive features, atypical patterns of sensory and motor functioning
and integration are also increasingly recognised as features of
ASC, with evidence of atypical visual perception (Simmons et al.,
2009), including perception of biological motion (Kaiser et al.,
2010), auditory perception (Hitoglou et al., 2010), somatosensory
integration (Russo et al., 2010), and motor functions (Gidley
Larson, 2006) as well as impaired sensorimotor integration
(Haswell et al., 2009), motor planning and control (Jansiewicz
et al., 2006; Rinehart et al., 2006; Freitag et al., 2007) and reduced
adaptability to environmental changes (Russo et al., 2007; Thakkar
et al., 2008; Foley Nicpon et al., 2010). There is also evidence that
motor deficits do not occur in isolation from the social and cognitive
features of ASC (Dziuk et al., 2007). In attempting to explain this
wide range of features of ASC several explanatory models of brain
functioning that suggest disturbances of underlying brain complex-
ity have been proposed, including atypical neural connectivity
(Belmonte et al., 2004; Courchesne and Pierce, 2005; Just et al.,
2007; Barttfeld et al., 2011; Wass, 2011) and disrupted temporal
integration of information (Brock et al., 2002; Rippon et al., 2007).
Supporting the possibility of atypical functional complexity in aut-
ism, it has been observed that, in those without ASC, improved
adaptability to cognitive demands is associated with increasing
physiological variability reflected by greater scalp EEG complexity
(McIntosh et al., 2008; Sitges et al., 2010) and that altered neural
connectivity may be associated with atypical signal complexity in
schizophrenia (Friston, 1996) and Alzheimer’s disease (Jeong,
2004). In addition, a recent study by Bosl et al. (2011) has shown a
decrease in resting state EEG complexity in infants at high risk of
ASC, when compared to normal controls, with low risk of ASC.

In order to examine whether ASC is associated with an atypical
pattern of complexity of brain function we examined multiscale
entropy (MSE) as a measure of physiological complexity in scalp-
recorded EEG data in a group of adults with ASC and a matched
typically developing control group. Entropy is a physical quantity
that measures the order of a system. Regular systems have lower
values of entropy, whilst totally irregular systems have very high
values of entropy. However, regularity is not necessarily correlated
with complexity. Random phenomena like white noise have very
low regularity and will therefore present high values of entropy,
but they do not have the structural richness of information over
multiple spatial and temporal scales that characterises complex
systems (Costa et al., 2002, 2005). In order to overcome this prob-
lem and differentiate between white noise and true complexity,
Costa et al. (2002, 2005) introduced the method of MSE, which
quantifies the complexity of a physiological signal by measuring
the entropy across multiple time-scales, using a coarse-graining
procedure. This model proposes that optimally functioning biolog-
ical systems are modulated by multiple mechanisms which inter-
act over multiple temporal scales. These processes generate
complex data composed of overlapping signals from all the interre-
lating mechanisms. In these circumstances, MSE analysis will re-
veal a high value of entropy sustained for increasingly coarser
time-scales. For random noise signals however, the system will
show a decrease in entropy values as the time-scales increase. This
is because a random white-noise signal has information only on
the shortest time-scale; as the time-scales increase, since no new
structures are revealed, the standard deviation of the signal de-
creases, causing a progressive decrease in the values of entropy
with time-scale (Costa et al., 2005).

Brain activity in typical development from childhood to adult-
hood has been associated with increasing MSE (McIntosh et al.,
2008), and in a study of adults with schizophrenia increased MSE
has been observed in fronto-central and parietal regions
(Takahashi et al., 2010) whereas age-related response to photic
stimulation in typical individuals (Takahashi et al., 2009), and treat-
ment of schizophrenia with antipsychotics, have been associated
with reduced MSE. Alzheimer’s disease has been associated with
several patterns of EEG complexity, with earlier studies reporting
lower MSE (Escudero et al., 2006; Park et al., 2007) whilst more re-
cently Mizuno et al. (2010) reported relatively decreased complex-
ity over smaller timescales but relatively increased complexity at
coarser timescales, possibly reflecting different modulating effects
by separate neuropathophysiological mechanisms. Additionally,
Bosl et al. (2011) have recently shown a decrease in resting state
EEG complexity, at several stages of development, for infants at high
risk of ASC, when compared to infants at low risk of ASC.

Whilst some MSE studies have analysed data collected during
resting states (Escudero et al., 2006; Hornero et al., 2009;
Takahashi et al., 2010; Bosl et al., 2011), others have employed
activation or stressor tasks to explore responses to stimuli of rele-
vance to the physiological or clinical process of interest (Takahashi
et al., 2009; Manor et al., 2010; Sitges et al., 2010). Previous event-
related potential (ERP) studies have found that face processing in
some circumstances is impaired in people with ASC (O’Connor
et al., 2005; Jemel et al., 2006; Churches et al., 2010) and in this
study we analysed EEG recorded whilst participants observed
images of faces and other objects.

In this investigation the first aim is to determine whether typi-
cal controls and a group with ASC have similar or differing patterns
of MSE. We predict that those with ASC will have an atypical pat-
tern of complexity, as reflected by significantly different MSE val-
ues at coarser time scales compared to controls. Secondly, given
the reduced behavioural adaptability observed in ASC (Russo
et al., 2007; Thakkar et al., 2008; Foley Nicpon et al., 2010), and
the observation that in the general population greater adaptability
is associated with higher MSE values (McIntosh et al., 2008), along
with findings of reduced complexity in infants at high risk of ASC
by Bosl et al. (2011), we hypothesise that MSE will be reduced over
coarser time scales in the ASC group, when compared to MSE in the
control group, during performance of a visual matching task. To ad-
dress the question of the extent to which differences in EEG com-
plexity may relate to group differences in EEG power spectra, we
also conducted a traditional power analysis using the same EEG
data. Based on results from previous studies (Milne et al., 2009;
Raymaekers et al., 2009) we did not expect to find any differences
in EEG power spectra between the ASC and the control groups.
2. Materials and methods

This study was approved by the School of Psychology Research
Ethics Committee at the University of Cambridge and all partici-
pants gave informed written consent.
2.1. Participants

Fifteen patients with ASC and fifteen typical controls were re-
cruited for this study. All ASC participants were diagnosed with



Table 1
Age, verbal IQ, performance IQ, full-scale IQ and autism questionnaire (AQ) scores for each group.

Participants characteristics

Controls (n = 15) AS (n = 15) Group comparison

Mean s.d. Range Mean s.d. Range

Age 29.38 4.63 21.50–37.77 31.44 6.71 23.79–42.34 t28 = �.980; p = .335
Verbala 114 16 77–133 119 11 101–134 t27 = �1.034; p = .310
Performance IQa 119 11 93–134 115 14 93–132 t27 = 834; p = .412
Full-Scale IQa 119 14 93–134 119 13 98–136 t27 = �.081; p = .936
AQb 16 7 4–27 35 7 21–46 t27 = �7.573; p < .0005

a IQ scores were not available for one control participant.
b AQ scores were not available for one control participant.
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ASC by a professional experienced with the diagnosis of ASC based
on international criteria (American Psychiatric Association, 2000).
Exclusion criteria for ASC participants were uncorrected impair-
ment in eyesight or hand movement, a personal or family history
of any psychological or genetic condition apart from ASC or a per-
iod of unconsciousness in the last 5 years. Exclusion criteria for
control participants were similar, with the addition of any personal
or family history of an ASC. All participants were male and were
right-handed, as measured by the Edinburgh Handedness Inven-
tory (Oldfield, 1971).

Participants were administered the Wechsler Abbreviated Scale
of Intelligence (WASI; (Wechsler, 1999) for IQ assessment and the
Autism Spectrum Quotient (AQ; (Baron-Cohen et al., 2001)). Higher
scores on the AQ reflect a greater number of traits indicative of
ASC. The ASC group (mean = 35, s.d. = 7) scored significantly higher
than the typical control group (mean = 16, s.d. = 7, t27 = �7.573;
p < .0005). The participant groups were matched for age and IQ.
Participants’ demographic details and their IQ and AQ scores are
presented in Table 1.

2.2. EEG recording

EEG data was acquired as part of an ERP protocol (Churches
et al., 2010) using 28 standard scalp electrodes placed in accor-
dance with the International 10–20 System (Klem et al., 1999). Ref-
erence was the tip of the nose with ground at Fpz. Eye-movements
were monitored using bi-polar channels with electrodes above and
below the left eye (vertical electro-oculogram) and 1 cm from the
outer canthus of each eye (horizontal electro-oculogram). Imped-
ances at all sites were maintained below 5 kX. EEG data was ob-
tained at a sampling frequency of 1000 Hz, with a .1–50 Hz input
bandpass filter, and using a 32-channel Synamps apparatus (Com-
pumedics Neuroscan, Charlotte, NC, USA). Consistent with previous
MSE studies (Escudero et al., 2006; Hornero et al., 2009; Takahashi
et al., 2010), the data was not subjected to other pre-processing
steps (i.e., filtering, artefact removal or data reconstruction algo-
rithms) since this could distort the data and influence the MSE
analysis results. Instead artefact free segments of data were chosen
for analysis.

The EEG was recorded whilst participants performed a face and
chair detection task. They were seated in a darkened room approx-
imately 60 cm from the computer screen, on which the stimuli
were presented. Stimuli consisted of 30 pictures of neutral faces
(15 male, 15 female) and 30 pictures of chairs.

Participants viewed two blocks of stimuli between which only
the order of the images varied. In each block, all 60 pictures (30
faces, 30 chairs) were presented three times pseudorandomly
without immediate repetition. Each image was presented for
500 ms, with an interstimulus interval that varied randomly be-
tween 1200 and 1400 ms. Thus each block lasted for about
5.5 min. In one of the blocks, the subject’s attention was directed
to the chairs, and in the other block their attention was directed
to the faces pictures. To do this, 10 images of faces (5 male, 5 fe-
male) and 10 images of chairs were inserted as immediate repeti-
tions. At the start of each block, participants were asked to attend
to one of the categories of stimulus (faces or chairs) and to press a
response button whenever they saw an immediate repetition of an
image of that category, while ignoring all stimuli in the other cat-
egory. The purpose of this instruction was to direct the partici-
pants’ attention to a given category. Response times and
accuracy were measured for each participant. Each block began
with a practice run of 10 stimuli. The order of the two blocks,
the attended category and the hand used to respond were counter-
balanced across participants. Participants rested for approximately
5 min between blocks.
2.3. Signal analysis

The first 180 s of EEG recording of all participants during each
visual task were extracted for analysis. From these 180 s, segments
free of artefacts such as eye movements, blinks, muscle move-
ments or other artefacts were visually identified and selected for
analysis. MSE and power analyses were run for each participant
for the first 40,000 data points (40 s) of the EEG signal resulting
from all the artefact free segments. This is the default number of
data points analysed by the MSE algorithm (available at http://
www.physionet.org/physiotools/mse/mse.c, (Goldberger et al.,
2000). Analyses were run separately for the chairs and for the face
tasks. There were no significant between group differences in the
number of pictures included in the 40 s period chosen for analysis
(chair task: control = 17 (standard deviation (s.d.) = 3), AS = 16
(s.d. = 4), t = .783, p = .440; face task: control = 18 (s.d. = 3),
AS = 17 (s.d. = 4), t = .422, p = .676). Electrodes Fp1, Fp2 and Fz
were excessively affected by eye movement artefacts and were re-
moved from the analysis. Technical problems affected electrodes
F3 and O2 during data acquisition for some participants. Therefore
electrode pairs F3/F4 and O1/O2 were also excluded from the
analysis.
2.4. Multiscale entropy (MSE)

The MSE method quantifies the complexity of a time-series
by calculating the sample entropy (SE) over several time scales,
using a coarse-graining procedure (Costa et al., 2002, 2005).
The SE is a measure of irregularity of a time-series. Considering
an EEG time-series x = {x1, x2, etc.}, SE can be defined as the neg-
ative of the logarithmic conditional probability that two similar
sequences of m consecutive data points will remain similar
at the next point (m + 1) (Richman and Moorman, 2000;

Richman et al., 2004): SEðm; r;NÞ ¼ �ln Cmþ1ðrÞ
CmðrÞ

� �
where CmðrÞ ¼

http://www.physionet.org/physiotools/mse/mse.c
http://www.physionet.org/physiotools/mse/mse.c


Fig. 1. Coarse graining procedure. Schematic illustration of the coarse-graining procedure. Adapted from Costa et al., 2005.
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j , of dimension m, r is the tolerable
distance between two vectors (in terms of fraction of the
standard deviation of the time-series) and N is the length of
the time-series. Therefore, for more regular series Cmþ1ðrÞ �
CmðrÞ ) Cmþ1ðrÞ

CmðrÞ ! 1) SEðm; r;NÞ ! 0. On the other hand, for com-

pletely irregular time-series Cmþ1ðrÞ << CmV
Cmþ1ðrÞ

CmðrÞ << 1)
SEðm; r;NÞ >> 1.

For MSE analysis, the original EEG time-series {x1, . . ., xi, . . ., xN}
is coarse-grained into consecutive time-series {y(s)}, corresponding
to the scale factor (SF) s: first the original time-series is divided
into non-overlapping windows of length s, and then the data
points inside each window are averaged, so each coarse-grained

time-series is defined by yðsÞj ¼ 1
s

� � Pjs
i¼ðj�1Þsþ1

xi;1 � j � N
s. The length

of each coarse-grained sequence is s times shorter than the length
N of the original series. SE is calculated for each time-series {y(s)}.
Fig. 1 shows a schematic illustration of the coarse-graining proce-
dure (adapted from Costa et al., 2005).

Previous studies have proved that SE has a good statistical valid-
ity for m = 1 or m = 2 and .1 6 r 6 .25 times the s.d. of the time ser-
ies (Lake et al., 2002; Richman et al., 2004). In this study we used
m = 2, r = .15 � s.d., N = 40,000 data points and 40 scale factors,
so that for the shortest coarse-grained time-series we still have
N/s = 40 000/40 = 1000 data points, which is enough to obtain reli-
able estimation of the SE value (Richman and Moorman, 2000).

2.5. Power analysis

It is possible that differences in complexity values are corre-
lated with differences in EEG power spectra (Takahashi et al.,
2009). In order to investigate this we performed a conventional
power analysis in the first 40 s of artefact free EEG data for each
participant. This analysis was performed using a built in function
(pwelch) in MATLAB software (version 7.10.0). The data were di-
vided into eight sections of equal length, each with 50% overlap.
Each segment was then windowed with a Hamming window and
spectral density (power/frequency) was calculated using a fast
Fourier transform (FFT). Four standard band frequencies were
studied: theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and
gamma (30–40 Hz). The relative power at each frequency band
was calculated as the power in each frequency band divided by to-
tal power across all frequency bands.
2.6. Statistical analysis

Statistical analyses were carried out using SPSS Statistics v17.0
software for Microsoft Windows. The alpha significance value was
set at .05. To test for differences in behavioural results, a 2-way
repeated-measures analysis of variance (ANOVA) was done for
accuracy and response time, with group (AS vs. controls) as a be-
tween-subjects factor, and task (chair vs. face) as a within-subjects
factor. In order to reduce the skewness in the distributions, re-
sponse time data was transformed using a logarithmic function (
f(x) = ln(x)) and proportional accuracy was transformed using an
arcsin function (f(x) = arcsin(sqrt(x))).

Distribution normality of MSE values was confirmed using the
Kolmogorov–Smirnov normality test as well as by examination of
skewness and kurtosis values, for each electrode and each group.
To test for group differences in complexity a 4-way repeated-
measures ANOVA was performed, with group (AS vs. controls) as
a between-subjects factor, and task (chair vs. face), SF (s: 40 scales)
and electrode (21 electrodes: C3, C4, Cp3, Cp4, F7, F8, Fc3, Fc4, Ft7,
Ft8, P3, P4, P7, P8, T7, T8, Tp7, Tp8, Cz, Oz, Pz) as within-subjects
factors. To test for group differences in EEG power spectra a
4-way repeated-measures ANOVA was used, with group as a
between-subjects factor, and task, electrode and frequency band
(4 frequency bands: theta, alpha, beta, gamma) as within-subjects



Table 2
Accuracy (out of 10) and response times (in msec) for both tasks, for each group.

Behavioural results

Controls (n = 15) AS (n = 15)

Mean s.d. Mean s.d.

Chair task
Accuracy (out of 10) 9.73 .59 9.60 .91
Response time (m s) 479.01 83.43 514.10 70.47
Face task
Accuracy (out of 10) 9.73 .46 8.80 1.47
Response time (m s) 493.12 88.46 515.34 84.36
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factors. The Greenhouse–Geisser adjustment was applied to the
degrees of freedom for all analyses and the Bonferroni correction
was applied for all post hoc tests.
3. Results

3.1. Behavioural performance

Regarding accuracy, there was no significant group-by-task
interaction (F1, 28 = 3.661, p = .066) or effect of group
(F1, 28 = 2.409, p = .132), but there was a significant effect of task
(F1, 28 = 4.898, p = .035). Regarding response time, no significant
effects of group (F1, 28 = 1.214, p = .280) or task (F1, 28 = .606,
p = .443) were observed. The group-by-task interaction was also
non-significant (F1, 28 = .740, p = .397). Further details on the par-
ticipants’ accuracy and response times can be found in Table 2.
3.2. MSE analysis

The results of the MSE analysis show a main effect of group in
which the sample entropy was higher in the control group
(mean = 1.33, s.d. = .23) than the ASC group (mean = 1.12,
s.d. = .29, F1, 28 = 4.859, p = .036). This was qualified by a significant
group-by-scale factor interaction (F1.936, 54.195 = 4.914, p = .012).
This means that collapsing across task and electrode the sample
entropy curves of each group presented a different slope as the
scale factor increases. Specifically, relative to the Control group,
there is a decrease in the values of sample entropy in the ASC group
as the scale factor increases (see Figs. 2 and 3). Hence, Figs. 2 and 3
reflect group differences in sample entropy for increasing scale fac-
tors, in each task. Although the difference between groups is not
noticeable for smaller scale factors, the curves for both groups be-
come distinguishable for higher scale factors, representing greater
group differences in sample entropy at higher scale factors. It is
this difference in curve profile between groups for smaller and
higher scale factors that drives the significant group-by-scale fac-
tor interaction found.

The results also showed a significant main effect of task (F1,

28 = 6.719, p = .015), with higher entropy associated with the faces
(mean = 1.28, s.d. = .31) than the chairs task (mean = 1.17,
s.d. = .29), for both groups. However, there was no significant inter-
action between task and participant group (F1, 28 = .067, p = .797).

There was also a significant group-by-SF-by-electrode interac-
tion (F7.637, 213.829 = 4.262, p < .0005). Although independence of
measurement cannot be assumed for each electrode, this interac-
tion was investigated further with 2-way ANOVAs (group-by-SF)
for each electrode. These results are shown in Table 3. A significant
group-by-SF interaction was found in electrode sites C3, C4, Cp3,
Cp4, T7, T8, Tp7, Tp8, P3, P4, P7, P8, Pz and Oz, as shown in
Fig. 4. After correcting for multiple statistical testing, using the
Bonferroni correction (pcorrected = puncorrected � 21 electrodes), a sig-
nificant group-by-SF interaction was still evident in electrodes Tp7,
Tp8, P7 and P4, in which entropy was lower in the ASC group at
coarser time scales. The results presented in Fig. 4 represent sites
where significant group-by-scale factor interactions, collapsed
across tasks, were found. These arise from differences between
groups in sample entropy curves profiles, i.e. significant group dif-
ferences will be present when the curves for each group have dif-
ferent characteristics (e.g. curves that start together for both
groups but have different slopes for higher scale factors, as can
be seen for example in the graph for electrode T7 in Fig. 2). These
should not be confused with between group differences in mean
sample entropy, calculated from the average of sample entropy
values across scale factors for each group.

3.3. Power analysis

No significant effects of group (F1, 28 = 1.895, p = .180) or task
(F1, 28 = .082, p = .776) were found. Group-by-frequency band
(F1.949, 54.584 = 1.545, p = .223) and task-by-frequency band
(F2.170, 60.765 = 2.074, p = .131) interactions were also not
significant.

4. Discussion

The present study found reduced sample entropy in EEG signals
acquired during a visual matching task in people with ASC, relative
to controls, at higher scale factors, as indexed by the significant
scale factor-by-group interaction. This difference in curve behav-
iour serves as an index for measuring signal complexity: systems
with higher complexity will present higher values of sample entro-
py, sustained over increasing values of SF (Costa et al., 2002, 2005).
This is because values of sample entropy sustained over increasing
values of SF suggest the existence of a power-law scaling property,
which is a characteristic of nonlinearity and intrinsic complexity in
physiological systems (Takahashi et al., 2009). This supports the
hypothesis that the complexity of electrical brain activity is re-
duced in people with ASC, possibly in association with relatively
reduced long-range temporal correlations in brain activity
(Takahashi et al., 2009) in response to the visual task employed
in this study.

The lack of significant differences in EEG power spectra be-
tween groups or tasks establishes a distinction between complex-
ity measures and power spectrum analysis; changes in complexity
values are not a reflection of changes in EEG power spectra. This is
in accordance with previous studies reporting the absence of
abnormal patterns in EEG power spectra in individuals with ASC
(Milne et al., 2009; Raymaekers et al., 2009).

ASC have long been associated with atypical patterns of neural
connectivity (Belmonte et al., 2004; Courchesne and Pierce, 2005;
Just et al., 2007; Barttfeld et al., 2011; Wass, 2011). Given that pre-
vious research has demonstrated that changes in local complexity
may be related to brain connectivity (Friston, 1996; Sakkalis et al.,
2008), we hypothesize that our findings may be associated with
atypical neural connectivity in ASC. Supporting this is the work
by Bosl et al. (2011), that shows a pattern of reduced EEG complex-
ity for infants at high-risk of ASC, at early stages of brain develop-
ment (6–24 months). Those authors considered that local neural
connectivity, which undergoes rapid changes during early brain
development, may be reflected in variation in EEG signal complex-
ity at these early stages, and suggest the possibility of EEG com-
plexity being used in the future as a biomarker for ASC risk. Our
results can be considered complementary to those reported by Bosl
et al. (2011). Whilst their findings indicated decreased complexity
in resting state EEG in infants at risk of developing autism, (by vir-
tue of having an older sibling with a diagnosis of autism), in the
current study we demonstrate the presence of reduced EEG com-
plexity in adults with a confirmed diagnosis of ASC, relative to



Fig. 2. Group differences in the chair task. Sample entropy by scale factor (SF) graphs for the chair task, for each electrode, for each group (full line – Control group, dashed
line – ASC group).
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typical controls, supporting the hypothesis that EEG complexity, as
an index for neural processing of information and neural connec-
tivity, is sensitive to the presence of an autistic condition.

Electrical activity measured in a single scalp electrode may not
have its origin in the cortex area directly underneath the electrode
(Picton et al., 2000), so it is not possible to localize the differences
observed as arising from any specific regions. Nevertheless, in the
current study post hoc analysis of the significant group-by-scale
factor-by-electrode interaction suggests that the differences be-
tween groups are more evident in temporo-parietal and occipital
regions of the cortex (see Fig. 4). These posterior areas are known
to subserve integrative functions during the processing of visual
information (Belmonte et al., 2004). These results are also in accor-
dance with functional imaging studies of visuospatial processing in
ASC, where differences have been found between ASC and controls
in the temporo-parietal junction and occipital regions of the cortex
(Di Martino and Castellanos, 2003; Billington et al., 2008; Sahyoun
et al., 2010). In addition, the observation from an earlier ERP anal-
ysis of EEG data which included the data employed in the current
study, that the N170 ERP face response in posterior sites (P7 and
P8) was less modulated by attention in the participants with ASC
than in a neurotypical control group (Churches et al., 2010), is com-
patible with the suggestion that the current MSE results may re-
flect a decrease in integrative capacity in the participants with
ASC. It is of interest to note that Bosl et al. (2011), who compared
resting state EEG complexity of infants at high risk and low risk of
ASC, reported a pattern of reduced complexity for infants at high-
risk of ASC particularly in frontal regions of the brain. This is in
contrast to our own findings, in which group differences in EEG
complexity measured during performance of a visual matching
task likely to involve temporo-parietal brain regions (Corbetta
et al., 1993; Schultz et al., 2000; Deffke et al., 2007) were greater
in posterior brain regions. This suggests that EEG complexity, as in-
dexed by MSE measures, may be a marker for local disturbances in



Fig. 3. Group differences in the face task. Sample entropy by scale factor (SF) graphs for the face task, for each electrode, for each group (full line – Control group, dashed line –
ASC group).
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task-specific processing of information as well as for more non-
specific associations of pervasive developmental disorders.

As well as potentially reflecting task-related neuronal activity,
our results suggest the possibility that MSE may also be sensitive
to how demanding a task is. In support of this proposition, it was
noted that the face task was performed, across both groups, a little
less accurately than the chair task, whilst at the same time,
although overall entropy levels were lower in the ASC group, the
analysis revealed an increase in complexity of the EEG signal for
the face task relative to the chair task across both the participant
groups. It is therefore possible that the decreased accuracy ob-
served reflected increased difficulty in the face task compared to
the chair task and that the increased MSE during performance of
the face task was a reflection of brain response to greater task de-
mands associated with attending to faces compared to non-face
objects. It should be noted however that this possible interpreta-
tion of our facts is speculative, and limited by the absence of a di-
rect correlation between MSE indices and behavioural task
performance as well as confounded by the nature of the tasks, in
that while both required visual matching, the more ‘difficult’ task
involved faces whilst the easier task involved chairs. In addition,
we do not have subjective ratings of the perceived difficulty of
the two tasks by the participants. All these issues should be ex-
plored during future research in this topic. However, the proposi-
tion is in line with the conclusion reported by Takahashi et al.
(2009), who interpreted higher MSE values following photic stim-
ulation in their healthy younger participants as reflecting the cor-
tical response to the stimuli, and the decrease in MSE values for the
elderly group as representative of an attenuated cortical response
to photic stimulation. Thus, whilst those with ASC manifest overall
lower entropy than the Control group, this group difference was
not differentially modulated by the precise nature of the visual task
and the ASC group, like the controls, responded to the faces with an
increase in EEG complexity. A possible implication of these results
is that the widely recognised atypical social and communication
behaviour that characterise ASC are not the result of isolated



Table 3
Group-by-SF interaction significance values for each electrode
site. Electrode sites in bold showed a significant (p 6 .05) group-
by-SF interaction.

Group-by-SF anova
Electrode Group-by-SF interaction

C3 F1.982, 55.502 = 4.432; p = .017
C4 F1.799, 50.360 = 3.629; p = .038
Cp3 F1.832, 51.293 = 6.405; p = .004
Cp4 F1.675, 46.897 = 5.071; p = .014
F7 F2.465, 69.023 = 1.060; p = .363
F8 F2.174, 60.870 = 1.160; p = .323
Fc3 F2.306, 64.560 = 1.467; p = .237
Fc4 F2.207, 61.805 = 1.730; p = .183
Ft7 F2.265, 63.432 = 1.267; p = .291
Ft8 F1.915, 53.609 = 3.085; p = .056
P3 F1.692, 47.378 = 6.047; p = .007
P4 F1.641, 45.941 = 8.268; p = .002a

P7 F1.997, 55.927 = 7.748; p = .001a

P8 F1.659, 46.445 = 6.844; p = .004
T7 F2.246, 62.875 = 4.806; p = .009
T8 F1.742, 48.780 = 5.028; p = .013
Tp7 F2.234, 62.542 = 8.217; p < .0005a

Tp8 F2.092, 58.584 = 6.930; p = .002a

Cz F1.873, 52.452 = 2.153; p = .129
Pz F1.579, 44.206 = 5.691; p = .010
Oz F1.756, 49.158 = 5.843; p = .007

a These electrode sites showed a significant (p 6 .05) group-
by-SF interaction after Bonferroni correction (pcorrected =
puncorrected � 21 electrode sites).
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P ≤ 0.05 

Fig. 4. Group-by-scale factor interaction. Electrodes that presented a significant
group-by-scale factor (SF) interaction. For electrode sites shaded gray, the group-
by-SF interaction had significance values p 6 .05, whilst for electrode sites shaded
black, significance values for this interaction were p 6 .01. Electrode sites Tp7, P7,
Tp8 and P4 presented significant (p 6 .05) group-by-SF interaction after being
subject to Bonferroni correction (pcorrected = puncorrected � 21 electrode sites).
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disturbances in selective brain functions. Rather, they may reflect
an overall change in brain functioning but, since social, emotional
and language functions make greater demands on neural networks
and on relationships between neural networks (Minshew and
Williams, 2007), these behaviours may be particularly vulnerable
to deficits in integrative capacity.

Considering the methods employed in this study, there are sev-
eral approaches used to examine auto-correlations in complex
physiological time series including the Hurst exponent (Lai et al.,
2010), power spectral density analysis, the rate of moment conver-
gence and multiscale entropy methods. In a comparison of these
four approaches Crevecoeur et al. (2010) concluded that MSE was
the most appropriate method for examining long-range correla-
tions in time series with more than 512 points and in the current
study we examined time series comprising a total of 40,000, with
a minimum of 1000 points for the shortest coarse-grained time-
series. We suggest that future MSE studies of EEG data in ASC
should also use resting state EEG data. Although some MSE studies
have investigated physiological complexity in resting conditions
(Escudero et al., 2006; Hornero et al., 2009; Takahashi et al.,
2010), others have employed activation or stressor tasks to explore
complexity responses to stimuli or clinical process of interest
(Takahashi et al., 2009; Sitges et al., 2010). Whilst there have been
no MSE studies so far analysing resting state EEG from adults with
a confirmed diagnosis of ASC, our results, together with those of
Bosl et al. (2011), seem to suggest that the pattern of group differ-
ences observed in the current study is related to the fact that we
recorded EEG signal during a visual task. If future studies confirm
MSE measures as indexing task-specific patterns of EEG complex-
ity, this might provide a new tool for the investigation of the tem-
poral organization of neural networks subserving specific cognitive
processes, and their possible perturbation in neurocognitive
disorders.
5. Conclusions

Overall, our results show a significant difference in complexity
between the ASC and the Control group. Particularly, our results
show that there is a decrease in EEG complexity in the ASC group,
when compared to the Control group, in occipital and parietal re-
gions of the cortex. This supports the model of an inherent alter-
ation in neuronal integration in people with ASC, in response to a
visual matching task, which may be associated with relatively re-
duced long-range temporal correlations in EEG and atypical neural
connectivity in people with ASC.
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