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Two questions arising in the analysis of functional magnetic 
resonance imaging (fMRI) data acquired during periodic sen- 
sory stimulation are: i) how to measure the experimentally 
determined effect in fMRl time series; and ii) how to decide 
whether an apparent effect is significant. Our approach is first 
to fit a time series regression model, including sine and cosine 
terms at the (fundamental) frequency of experimental stimu- 
lation, by pseudogeneralized least squares (PGLS) at each 
pixel of an image. Sinusoidal modeling takes account of lo- 
cally variable hemodynamic delay and dispersion, and PGLS 
fitting corrects for residual or endogenous autocorrelation in 
fMRl time series, to yield best unbiased estimates of the 
a m p l i e s  of the sine and cosine terms at fundamental fre- 
quency; from these parameters the authors derive estimates 
of experimentally determined power and its standard error. 
Randomization testing is then used to create inferential brain 
activation maps (BAMs) of pixels significantly activated by the 
experimental stimulus. The methods are illustrated by appli- 
cation to data acquired from normal human subjects during 
periodic visual and auditow stimulation. 
Key words: time series; functional MRI; statistical mapping; 
regression. 

INTRODUCTION 

Functional magnetic resonance imaging (fMRI) is to 
structural MRI as movies are to still photography: func- 
tional MR images, like movies, show events unfolding 
longitudinally in time; whereas still or structural images 
are instantaneous. Each element in the 2-dimensional 
matrix of a typical functional MR image is a point in a 
time series. If the size of the matrix is, e.g., 128 X 64, the 
image is effectively comprised of 8192 series of digitized 
time points, t = 1,2,3, . . . , N, all of an identical length, 
N ,  dictated by the experimental design and scanning 
parameters used to acquire the image. 
An experimental design that has been widely used 

since fMRI first became available to neurobiologists and 
clinicians in the early 1990s is periodic sensory stimula- 
tion. In this, the experimenter exposes the subject to a 
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regularly periodic sensory stimulus and hopes to detect a 
related periodic pattern in the fh4RI time series recorded 
from those cortical regions involved in processing sen- 
sory input of the experimental modality. Two general 
questions of data analysis that arise from such studies 
are: i) what is the best way to measure temporal change in 
the fh4RI signal apparently related to perception of the 
experimentally determined stimulus? and ii) how should 
we decide whether any such measured change is signif- 
icant or not? 

One simple way to estimate the experimental effect is 
to average images acquired during the ON and OFF pe- 
riods of sensory stimulation, then subtract the average 
ON image from the average OFF image; thus estimating 
the mean ON-OFF difference in signal intensity at each 
pixel. An equivalent approach is to estimate the cross 
correlation between the time series observed at each 
pixel and the square or “box-car’’ waveform representing 
experimentally determined ON-OFF change in condi- 
tions (also known as the input or contrast function). 
Several groups have used one or other of these funda- 
mentally identical methods to demonstrate (as antici- 
pated) a relatively large experimental effect on T2*- 
weighted signals recorded from temporal cortex during 
periodic auditory stimulation (I), and occipital cortex 
during periodic visual stimulation (2). However, it is 
clear that this general approach to estimation entails loss 
of power to detect activated pixels, chiefly because it 
ignores the inevitable delay (in the order of 5-8 s) be- 
tween neuronal activation and 90% maximal hemody- 
namic response (3); in other words, stimulus-related 
changes in signal intensity will not begin and end at the 
same times as stimulus presentation. 

More sophisticated methods of estimation have been 
proposed to address this problem of a hernodynamically 
modulated response to stimulation. For example, Ban- 
dettini et al. (3) adjusted the phase, 4, of the contrast 
function by an estimate of hemodynamic delay; then 
estimated the cross correlation between fh4RI time series 
and the phase-adjusted contrast function. A comparable 
but more formal approach has been introduced by Fris- 
ton et al. (4). These authors modeled the hemodynamic 
response to neuronal activation as a Poisson function 
parameterized by a global estimate of temporal smooth- 
ness, A, in the fMRI time series; and proposed that cross 
correlation between fMRI time series and the box-car 
input function should properly be estimated only after 
the latter has been convolved with this hemodynamic 
response function. In short, to persevere with cross cor- 
relation as a measure of experimental effect, one must 
somehow “undo” hemodynamic modulation of a pre- 
sumably instantaneous neuronal response to the experi- 
mentally determined input function-either by adjusting 
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the phase of the input function by an (a  priori) estimate 
of hemodynamic delay (3); or by adjusting both phase 
and shape of the input function by convolution with a 
point spread function (4). 

Of course, whatever method is used to estimate the 
experimental effect on fMRI time series, it remains to 
decide whether or not an observed effect is significant; in 
other words, whether or not the pixel at which that effect 
was observed should be regarded as activated by the 
experimental stimulus. It is possible to make such a 
decision simply by comparing the size of the experimen- 
tal effect observed at a given pixel to some arbitrarily 
large value. For example, one can decide that a pixel 
represents activated brain tissue if the cross correlation 
coefficient estimated at that pixel, ri, is greater than, say, 
0.25, 0.5, or 0.75 (3); but this sort of decision has the 
obvious disadvantage that it imparts no sense of how 
likely we are to be mistaken if we believe it. Perhaps for 
this reason, a probabilistic approach has been preferred 
by other groups. Probabilistic decision making (e.g., as in 
ref. 4, on the basis of estimated r) typically involves three 
steps: i)  estimating the test quotient (e.g., rQi = rj divided 
by its standard error SE(ri)) at each pixel in the image; ii) 
referring the observed values of the test quotient (e.g., 
rQj) to its sampling distribution under a null hypothesis; 
and iii) deciding that a pixel is not activated unless the 
probability of its test quotient under a null hypothesis 
(e.g., p (rQ 3 rQ,/H,)) is less than an arbitrarily small 
level, a. 

These principles may be generalized to probabilistic 
decision making on the basis of any estimated measure of 
experimental effect; but, in any case, accurate specifica- 
tion of the null distribution will be of crucial importance. 
If we can be sure that the observed values of the general 
test quotient, UQ,, are identically distributed under a 
null distribution of theoretically known form, e.g., nor- 
mal, then it is not difficult to obtain from standard tables 
a critical value, CV, for a test of size a, and accept that 
any observed value of the test quotient greater than CV 
has a probability under the null hypothesis less than a. 
However, theoretical asymptotic distributions will not 
always be available or sufficiently accurate for signifi- 
cance testing in fMRI analysis (5). Groups working on 
positron emission tomography (PET) data analysis have 
recently used nonparametric or distribution free meth- 
ods, such as randomization or Monte Carlo simulation, to 
ascertain critical values for testing the significance of 
activated pixel clusters (6, 7). Especially in the context of 
testing large image data sets, the theoretical approach has 
a clear advantage in terms of speed; but the computation- 
ally more intensive Monte Carlo or randomization meth- 
ods have generic advantages of directness, robustness, 
and versatility. To paraphrase a remark by R. A. Fisher 
(cited in refs. 8 and 9), randomization is tedious but the 
results obtained by theory are valid only insofar as they 
are corroborated by this elementary method. 

In this paper, we investigate: i) time series regression 
modeling to estimate the experimental effect at each 
pixel of functional MR images acquired during periodic 
sensory stimulation; and ii) randomization testing to de- 
cide which pixels are significantly activated by the ex- 

perimental stimulus. We also include some thoughts on 
future developments. 

IMAGES 
Functional MR Image Acquisition 

The data reported in this study were acquired by echo- 
planar imaging (EPI) using a GE Signa system (General 
Electric, Wisconsin) controlled by an Advanced NMR 
operating console (Advanced NMR, Massachusetts). One 
hundred T,*-weighted MR images (TE 40 ms; TR 3 s) 
depicting BOLD contrast (10) were acquired at a field 
strength of 1.5 Tesla from 10, 5-mm thick, contiguous 
slices, with an in-plane resolution of 3 mm. Each 2D 
image matrix was comprised of 128 x 64 pixels, each of 
which had a 16-bit integer value for signal intensity. 

Pilot scans in three orthogonal planes were used to 
define the plane of image acquisition. For experiments 
involving visual stimulation and the null experiment 
(see below), the plane of acquisition was near axial, par- 
allel to the line of the calcarine fissure. For the experi- 
ment involving auditory stimulation, the plane of acqui- 
sition was again near axial, parallel to the line of the 
Sylvian fissure. All images are presented so that the left 
side of the image corresponds to the right side of the 
brain. 

Experimental Designs 

Images were acquired from normal volunteer subjects 
under the following experimental designs: 
Photic Stimulation. The ON condition was 30 s of 8 Hz 
pattern-flash photic stimulation via light proof stimulat- 
ing goggles (model GRASS SVlOO); the OFF condition 
was 30 s of darkness. In all, five ON-OFF cycles were 
presented in the course of image acquisition over 5 min. 
Visual Hemifield Stimulation. During photic stimulation 
(as above), the subject was wearing contact lenses, which 
restricted his field of vision to a unilateral hemifield (11). 
Two images were acquired: one with the subject exposed 
to visual stimulation only in his right hemifield; the 
other with the subject exposed to visual stimulation only 
in his left hemifield. 
Visual Perception of Motion. The ON condition was 30 s 
of visual exposure to an animated (cartoon) film; the OFF 
condition was 30 s of exposure to a single frozen frame of 
the film. Five ON-OFF cycles were presented over the 
course of 5 min. 
Bimodal Stimulation. Two ON conditions were pre- 
sented at different frequencies in the course of the same 
experiment. One ON condition was 21 s of auditory 
exposure to the sound of the experimenter reading aloud 
from a novel; the corresponding OFF condition was 21 s 
of silence. The other ON condition was 27 s of photic 
stimulation (as above); the corresponding OFF condition 
was 27 s of darkness. 
Null. In this experiment, there was no alternation be- 
tween ON and OFF conditions. The subject was simply 
asked to lie quietly in the scanner while images were 
acquired in the usual way over the course of 5 min. 
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Image Registration 

A fully automated and objective method of image regis- 
tration was used to estimate the extent of rigid motion in 
two spatial dimensions {x,yl during image acquisition 
(12). The method finds (by a nonlinear search algorithm 
(13)) estimates for translation and rotation in {x,y) that 
minimize the total absolute difference in gray scale val- 
ues between each 2D (match) image acquired at a given 
point in time, fMRI,, and the mean 2D (base) image cre- 
ated by averaging all (100) fMR1,'s over time. The maxi- 
mum extent of {x,yl translation identified in any of our 
images was less than 0.5 mm; and the maximum angle of 
{x,y) rotation was less than 0.5 degrees. Nevertheless, the 
match images were realigned relative to the base image, 
by bicubic spline interpolation, prior to any further 
analysis. 

For the images presented in this paper, all of which 
were acquired from healthy volunteers who were able to 
remain still in the scanner, realignment alone seemed 
sufficient to address the problem of (minor) movement 
artifact. However, it may be advantageous to take further 
steps to remove movement-correlated components from 
fMRI time series prior to analysis of images acquired 
from more mobile subjects (14). 

ESTIMATION 
Exploratory Regression Modeling of an fMRl Time Series 

A time series for exploratory analysis was obtained by 
averaging the individual time series observed at 156 pix- 
els representing occipital cortex in a 2D image acquired 
during photic stimulation: it was expected a priori (2 ,15)  
that this region of the brain should be highly activated 
under these experimental conditions. At each pixel, the 
number of points in the series was identical: N = 100. 
The averaged time series is plotted, together with the 
concomitant box-car input function (Fig. la); Figs. 1b and 
Ic  show the corresponding periodogram and correlo- 
gram. Inspection of these plots suggested a slight nega- 
tive linear trend over the course of the experiment, as 
well as a marked periodic or sinusoidal trend with the 
same [fundamental) frequency as the input function. In 
addition, relatively modest peaks were evident in the 
periodogram at frequencies corresponding to the first and 
second harmonics of the fundamental frequency. 

These observations suggested the following time series 
regression model to account for linear and sinusoidal 
trends in the data: 

Y, = a + jit + vin(wt) + Scos(wf) + y'sin(2wf) 
[I1 

Here Yt is the T,*-weighted signal intensity value ob- 
served at time point t = 1,2,3, . . . , N, w is the (funda- 
mental) frequency in radians per time point of the box- 
car function (in this case, w = 2mJ20); 2w and 3 w  are the 
first and second harmonic frequencies, respectively; and 
p, is a residual term (see ref. 16 for a general introduction 
to time series regression). This model can be written 
more succinctly using matrix notation: 

Y = X B + R ,  [21 

+ S'cos(2wf) + fsin(3wf) + s"cos(3wt) + pt.  

0 5 15 
Laa 

C 

FIG. 1. (a) Time series plot of a spatially averaged fMRl signal 
(solid line) observed during periodic visual stimulation (dotted line): 
@) periodogram of fMRl time series; (c) conelogram of fMRI time 
series; horizontal dotted lines are +2/.\/N, Bartlett's approximate 
95% confidence interval. Estimated AR coefficients more negative 
or positive than these limits are significantly different from zero. 

where Y is an N-dimensional column vector of T,*- 
weighted signal intensity values ( N  = 100); B is a p 
dimensional column vector of model parameters (P = 8): 
X is an N x p design matrix; and R is an N-dimensional 
column vector of residuals. Assuming that the elements 
of R are serially independent, the p X p dimensional 
matrix (XTX)-' then has diagonal elements proportional 
to the standard errors of the parameter estimates, and 
off-diagonal elements proportional to the covariance be- 
tween parameter estimates. 

The model was first fitted by ordinary least squares 
(OLS), and the OLS parameter estimates {a, b, +, 8, y,  &, 
7, 8") are given in Table 1 with their standard errors. 
However, before placing too much emphasis on these 
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Table 1 
Estimated Regression Coefficients, and Standard Errors (SE), Obtained by Various Fitting Procedures 

OLS PGLS ARlMA 

Estimate SE Estimate S E  Estimate SE 
a! 1365.4 1.5 1366 2.8 1365.8 2.7 
P -0.1 

Y' 1.9 

Y -18.14 
f i  15.12 

6' 1.43 
Y" 3.6 
s" 4.4 
b 0.54 

0.026 
1.03 
1.03 
1.02 
1.02 
1.02 
1.02 
0.085 

-0.1 1 
- 17.93 
15.24 
2.14 
1.31 
3.75 
4.12 
0.53 

0.05 
1.69 
1.70 
1.34 
1.34 
1.07 
1.06 
0.1 

-0.1 
- 17.83 
15.43 
2.23 
1.45 
3.83 
4.23 
0.54 

0.05 
1.57 
1.71 
1.25 
1.23 
1.09 
1.01 
0.007 

estimates, we must bear in mind that the method of 
ordinary least squares generally provides minimum vari- 
ance unbiased estimates (MVUEs) of regression model 
parameters only if the error terms of the fit are indepen- 
dent and normally distributed (17). To check the validity 
of this crucial assumption, we examined the residual 
terms {p, )  by time series, periodogram, and correlogram 
plots (Fig. 2). The correlogram suggested that the residual 
process was autocorrelated. 

A plot of the partial autocorrelation function (PACF) 
was used to indicate which order of autoregressive (AR) 
model should be fitted to the { p J  series. The partial 
correlation between pf and pf+k is the correlation at 
lag k after regression of p, on all intermediate terms 
( P ~ + ~ ,  , . ., and is zero for lags greater than the 
order of the AR process in the series (18). As shown in 
Fig. 3. the PACF was only significantly different from 
zero at k = 1; suggesting that the first order AR process, 

would be an appropriate model to fit. Here 5 is the AR 
coefficient (estimated by OLS in Table I), and E ,  is an 
error term. The adequacy of this AR(1) model to account 
for structure in the {p,) series was assessed by testing for 
persistent autocorrelation in its error terms, {ef t .  Figure 4 
shows time series, periodogram, and correlogram plots 
for the {ell series. There is no graphical evidence for 
significant autocorrelation; this visual impression was 
corroborated by a Box-Pierce test for white noise (19). 
The Box-Pierce test statistic, QK, is given by the following 
expression: 

where ac, is the autocorrelation coefficient at lag k = 
1,2,3,. . ., K. Under the null hypothesis that the time 
series in question is serially independent, or white noise, 
QK is distributed as xz with K - q degrees of freedom, 
where q is the order of AR process fitted to the series. 
Improbably large values for QK may therefore be taken as 
evidence of significant serial dependency. For the le,) 
series, Q,, was 13.2 with 14 degrees of freedom, which 
was compatible with the null hypothesis ( P  = 0.51). 

0 50 100 150 200 250 300 
seconds 

a 

-I 

FIG. 2. (a) Time series plot of residual terms (p,) generated by 
OLS fit of a sinusoidal regression model (Eq. [l]) to the fMRl time 
series in Fig. la; (b) periodogram of (p,); (c) correlogram of (p,). 
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k g  

FIG. 3. Partial autocorrelation function for the OLS residual se- 
ries, (p,}. Horizontal dotted lines are +.2/dN, Bartlett's approxi- 
mate 95% confidence interval; estimated partial autocorrelation 
coefficients more negative or positive than these limits are signif- 
icantly different from zero. 

Least Squares Fitting with Autocorrelated Errors 

Exploratory analysis thus far strongly suggests that we 
cannot assume that the error terms generated by an ordi- 
nary least squares fit of the regression model are inde- 
pendent; the [pJ  time series is in fact (first order) auto- 
correlated. The chief implication of this discrepancy is 
that the standard errors of the regression coefficients 
estimated by straightforward OLS will be biased; typi- 
cally, the errors will be underestimated. This bias in error 
estimation could in turn lead to spuriously elevated test 
quotients (e.g., YlSE(V)), a false sense of confidence in the 
coefficient estimates, and mistaken attribution of signif- 
icance to linear andlor sinusoidal trends in the observed 
time series. For these reasons, we adopted one of a vari- 
ety of alternative model fitting techniques, known as 
pseudogeneralized least squares (PGLS) (20-ZZ), to ac- 
knowledge and correct for the autocorrelated structure of 
the (p,) series in estimating the time series regression 
coefficients and the standard errors of these estimates. 

The series of autocorrelated residuals, {p,), was gener- 
ated by a preliminary OLS fit, as described above. From 
these autocorrelated residuals, the first order AR coeffi- 
cient, c, was estimated: then used to transform the orig- 
inal terms of the regression model, as shown below in 
matrix notation. (Transformed terms are asterisked, *; the 
subscript t denotes the row of the Y vector or X matrix at 
time point t = 1,2,3,. . . , N.)  

Yt* = Y, - LY,-, 151 

x,* = x, - l X , q  161 

Ordinary least squares was then used a second time to 
estimate the model parameters B in the transformed 
model, Y* = X*B + R*, yielding a new series of residuals 
R*, or (p,*} .  Both graphically (Fig. 5), and by the Box- 
Pierce test (Qls = 13.7, df14, P = 0.47), the (pt * )  series 
was uncorrelated; and a normal quantile plot of {p,*)  was 
linear. These results suggest that, at least in the analysis 

3 50 loo 150 200 250 300 
seconds 

0.0 0.05 0.10 0.15 
Frequency (Ha 

b 
0 4 .  7 ,  1 

3- 0 5 10 15 

Lag 
C 

FIG. 4. (a) Time series plot of residual terms {e,} generated by 
fitting a first order autoregressive model (Eq. [3]) to the (p,} series 
in Fig. 2; (b) periodogram of {e,}; (c) correlogram of ( E , } .  

of this spatially averaged time series, the residuals of the 
second OLS fit satisfy the crucial assumptions of inde- 
pendent and normally distributed errors. 

To check that these assumptions were more generally 
satisfied, we fitted the regression model by OLS and 
PGLS to 156 individual time series sampled from a 2D 
image acquired during photic stimulation. This gener- 
ated 156 OLS and PGLS residual series, fp,l and {p,*l, 
respectively. For each residual series, we computed the 
Box-Pierce statistic, Q,5;  and, for each (PI*) series, the 
ranked, standardized residual values. Figure 6 shows a 
quantile-quantile (qq) plot of Q,, estimated in 156 {pt )  
and ( p t * )  series versus 156 random samples from the 
theoretical null distribution (2, df 14). Departures from 
linearity in this plot indicate discrepancy between the 
observed distribution of Q,, and its theoretical null dis- 
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. I ,  I 
0 50 100 150 200 250 300 

Seconds 

5 10 1 
Lag 

FIG. 5. (a) Time series plot of residuals {p*J generated by PGLS fR 
of a sinusoidal regression model (Eq. Ill) to the fMRl time series in 
Fig. la; (b) periodogram of (p'J; (c) correlogram of {p',). 

tribution. The qq plot of Q,, in the (pt]  series is clearly 
nonlinear, suggesting that these residuals are signifi- 
cantly autocorrelated; whereas, the qq plot of Q,, in the 
(p,* ]  series is almost exactly linear. This plot confirms the 
need for treatment of OLS residual autocorrelation (al- 
ready indicated by the correlogram in Fig. 2c derived 
from the spatially averaged time series), and provides 
good graphical evidence that the distribution of Q,5 in 
the PGLS residual series is compatible with the assump- 
tion of serial independence. Figure 7 shows another 
quantile plot, in which the mean standardized PGLS 
residuals, averaged over all 156 [p t * )  series, are plotted 
against quantiles of the standard normal distribution. 
Also shown is the range (maximum and minimum) of the 
standardized PGLS residuals observed at each quantile, 
which gives an indication of the extent of scatter of the 

.- 2 8  0 

3 -  0 
u) 0 
0 
e 0" 

m 

Q 
0 

0 0  S g  

0 

5 10 15 20 25 30 

Chi squared (df 14) 

FIG. 6. Quantile-quantile plot of the Box-Pierce test statistic, Q,,, 
estimated in 156 OLS residual series I p J ,  and 156 PGLS residual 
series wt) versus 156 random samples from the null distribution of 

,$ with 14 df. Open circles indicate OLS residual estimates; 
filled circles indicate PGLS residual estimates. Departure from the 
straight line is incompatible with a null hypothesis of serial inde- 
pendence. 

z ;  
-2 -1 0 1 2 

Ouantiles of Standard Normal 

FIG. 7. Quantile-quantile plot of mean standardized PGLS resid- 
uals versus quantiles of the standard normal distribution. The 
dashed line indicates the maximum standardized residual value 
observed at each quantile; the dotted line indicates the minimum 
standardized residual value at each quantile. Linearity is consis- 
tent with normality. 

residuals about their mean. This plot supports the hy- 
pothesis that the sampling distribution of PGLS error 
terms is normal. 

On the basis of these graphical results, it seems justi- 
fiable to conclude that the assumption of independent 
and normally distributed error terms is generally satis- 
fied after iterated OLS, or PGLS, fitting of the model. It 
therefore seems reasonable to regard PGLS estimates of 
the regression coefficients I&,  @, +, 8, y ,  %', y, &'I, and 
their standard errors, as best unbiased estimates of these 
parameters. 

As shown in Table 1, there was relatively little differ- 
ence between the PGLS estimates of these coefficients 
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and the estimates obtained by straightforward OLS; how- 
ever, as theoretically predicted, the standard errors of the 
coefficients estimated by PGLS were up to 70% greater 
than the biased (underlestimates of standard errors ob- 
tained by OLS fitting of the model with untransformed 
terms and autocorrelated residuals, (p,). 

Other Fitting Procedures 

Adopting the terminology of Box and Jenkins (231, one 
can describe the OLS residual series {p,] as an autocorre- 
lated integrated moving average (ARIMA) process of or- 
der (1,0,0). It is possible to fit such models, with addi- 
tional regression variables, by nonlinear optimization; 
for example, the function arima.mle() in S-PLUS will 
converge on maximum (conditional) likelihood estimates 
of both AR and time series regression coefficients by 
iteration of a quasi-Newton algorithm (18, 24). We com- 
pared the estimated parameters, and their standard er- 
rors, obtained by this nonlinear optimizing function to 
the estimates obtained by iterated least squares. It can be 
seen from Table 1 that estimates of the regression coeffi- 
cients and their standard errors obtained by these two 
fitting procedures are very similar. This is theoretically 
not surprising because both procedures maximize the 
Gaussian likelihood of {&, b, y, 8, y, 8,  y, &'I condi- 
tioned on p. In this light, it seems natural to prefer the 
fitting procedure that is computationally less demand- 
ing, and iterated least squares is approximately four 
times faster than nonlinear optimization (comparing rou- 
tines for both procedures written in S-PLUS). Parenthet- 
ically, the maximum conditional likelihood estimates 
provided by both PGLS and arima.mle() may be slightly 
less efficient than estimates obtained by maximizing the 
full likelihood, but the difference in efficiency will be 
negligible when the number of data points (100) is large 
relative to the order of the AR process (1) in the residuals 
(as it is in these data); and the computational cost of 
maximizing the full likelihood would probably be greater 
than that of maximizing the conditional likelihood by 
nonlinear optimization (22). 

Derivation of Power and Phase 

From the estimated sinusoidal regression coefficients {y, 
8, Y, a', y, &'), it is possible to derive the power and 
phase of each of the three periodic components in the 
model, For example, power at the ON-OFF frequency of 
stimulation, or fundamental power (FP), is 

F P =  + 8'. 171 

It can be seen that fundamental power is equivalent to 
the squared amplitude of a phase shifted sine wave at the 
frequency of experimental stimulation, i.e., 

%inot + &osot = J $ T F  sin(ot - 41, 
181 

d 
# = -atan 7. 

Y 

So, if the OFF condition is presented first, the delay (in 
seconds) between stimulus and response is half the 
length of the ON-OFF cycle (i.e., 30 s) multiplied by 

[91 

thus the estimated hemodynamic delay in these data is 
approximately 6.8 s. (In experiments where the ON con- 
dition is presented first, delay is given by half the ON- 
OFF cycle (in seconds) multiplied by #/lr.) 

The standard error of fundamental power, SE(FP), is a 
function of the standard errors of its two constituent 
parameter estimates, SE(.j) and SE($), and the covariance 
between them, cov{i.$t. From the matrix (X*TX*)-', for 5 
in the range [O, 11, cov(.i.,i?t is never greater than 0.2% of 
the variance in 9 and 8; the contribution of cov(+,b) to the 
standard error of FP is therefore practically negligible. 
Assuming 9 and 8 are independently normal, SE(FP) is: 

[lo] 

Under the null hypothesis that there is no experimentally 
determined periodicity in observed fMRl time series, the 
expected values of and 8 are zero and the standard error 
of FT is given by the simpler expression: 

SE(FP) = +(YSE(T) + 8*SE(8)) + 2(SE(-j)* + sEo4). 

SE(FP) = $WET). 

These formulae can immediately be generalized to es- 
timate power at the first and second harmonic frequen- 
cies, P1 and P2, and their standard errors (SE(P1) and 
SE(P2)). The estimates and standard errors of these pa- 
rameters derived from a PGLS fit of the model to the 
spatially averaged time series are given in Table 2. 

Comparison to Other Estimators of Experimental Effect 

To compare this method (fitting a sinusoidal regression 
model by PGLS) to alternative estimators of the experi- 
mental effect in fMRI time series, we must first introduce 
some more general notation. Let the pattern of ON-OFF 
experimental stimulation be denoted by a square or box- 
car function, {BOX,], which has value 1 during the ON 
condition and value -1 during the OFF condition. We 
can then say that the observed time series. after removal 
of linear trend, {Y,], is proportional to (BOX,] plus noise: 

Y, = A * BOX, + Err,. [I21 

Here A is the amplitude of the box-car function and Err is 
an error term, with expected value zero. Then three pos- 
sible measures of experimental effect+) the mean dif- 
ference in signal intensity during ON and OFF condi- 
tions, (ii) the cross-covariance between the observed 
fMRI time series and the box-car input function, and (iii) 

Table 2 
Fundamental and Harmonic Power Estimates Derived from 
Sinusoidal Regression Coefficients 

Coefficient Estimate Standard error of 

FP 553.7 5.75 0.01 
P1 6.29 3.59 0.57 
P2 31.1 2.26 0.07 
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an ordinary least squares fit to the linear model in Eq. 
[12]-will all have the same expected value of A. 

However, as already discussed, this model is inade- 
quate to cope with hemodynamically mediated delay 
between the input function and the observed fMRI time 
series. To include hemodynamic delay in the model (e.g., 
as in Bandettini et al. (311, we can rewrite Eq. [121 as 
follows: 

Y, = A - BOX,-d + Err,, 1131 

where d is the number of time points between stimulus 
and observable response. As shown in Fig. 8, we have 
fitted this model by least squares to the spatially aver- 
aged fMRI time series using various integer values of d 
(points marked by x]. We assume that the first point in 
the fMRI series is observed 3 s after the start of the 
experiment, so delay between stimulus and response in 
seconds is 3*(d+ 1). It can be seen that the goodness-of-fit 
(GOF = residual sum of squares divided by total sum of 
squares) of this model is a function of delay. As expected, 
the worst fit to the data is given by d = 0 (corresponding 
to a delay of 3 s), which is effectively fitting Eq. [12]. The 
best fit by this method is with d = 2, corresponding to a 
delay of 9 s. It should be noted that the smaller the 

x..... 

4 6 8 i o  12 
Delay (seconds) 

FIG. 8. Plots of GOF = residual sum of squares divided by Aal 
sum of squares versus delay, in seconds, for alternative estimators 
of the experimental effect in the spatially averaged fMRl time 
series. Diagonal crosses, X, mark the GOF obtained by fitting the 
model of Eq. [13] with variable integer values of d. The best fit 
obtainable by this method has GOF = 21.7%; the worst fit (equiv- 
alent to fitting the model of Eq. 1121) has GOF = 55.3%. The dotted 
line shows the GOF obtained by fitting the model of Eq. [15] with 
variable values of h used to parameterize the Poisson (hemody- 
namic response) function; the diamond indicates the best fit by 
this method (GOF = 15.0%). The solid line shows the GOF ob- 
tained by fitting the model of Eq. [14], with a pure sine wave as the 
smooth periodic function f ,  and variable phase relative to the 
box-car function; the circle indicates the best fit by this method 
(GOF = 19.7%). The inverted triangle indicates the GOF, and 
estimated hernodynamic delay, obtained by fitting a sinusoidal 
regression model (Eq. [1]) using the method of PGLS (GOF = 

10.2%). 

residual sum of squares, the greater the estimated cross 
correlation, so worse fitting models will tend to under- 
estimate the size of the experimental effect in terms off. 

To take account of differences in shape (as well as 
phase or delay) between the observed time series and the 
box-car function, it is possible to modify Eq. [131 thus: 

Y, = A*f ( t  - d) + Err,, [141 

where f is a general smooth periodic function. We fitted 
Eq. [14] by OLS to the spatially averaged time series 
using two different functions: (i) a phase shifted sine 
function, At-d) = sin(o(t-d)), and (ii) the box-car func- 
tion convolved with a Poisson function parameterized by 
A ( = 3d), 

used by Friston et al. (4). As shown in Fig. 8, the GOF 
obtained by these two methods is a function of CY and A, 
respectively. The best possible fit to these data obtained 
by the method of Friston et al. (41 (point marked by a 
diamond] is better than the best possible fit obtained by 
the phase shifted sine wave (point marked by a circle); 
and this may reflect the relative success of these func- 
tions in approximating the “squareness” of this particu- 
lar fMRI waveform (see Fig. la) .  

Overall, our method provides the best fit to these data 
(point marked by an inverted triangle], and to other time 
series we have comparatively analyzed, probably for two 
reasons: (i) adequate treatment of residual autocorrela- 
tion, as discussed above; (ii) use of six sine and cosine 
terms in the model, which allow a more flexible approx- 
imation to the phase and shape of the main periodic 
trend in the series than is possible by the relatively 
under-parameterized alternative methods. 

Descriptive Image Analysis and Mapping 

We fitted the sinuoidal regression model (Eq. [I]) by 
PGLS to the multiple fMRI time series comprising a sin- 
gle 2D slice of the image acquired during photic stimu- 
lation. The size of the image matrix was 1 2 8  X 64 and the 
total number of time series was therefore 8192, each of 
length N = 100. Pixels representing only nonbiological 
background noise typically had much lower signal inten- 
sity value than pixels representing skull or brain. To 
reduce computational overheads, pixels with initial sig- 
nal intensity value less than an empirically determined 
threshold of 200 were excluded from analysis; this re- 
duced the total number of time series to 1811. This set of 
suprathreshold pixels will be referred to subsequently as 
the search volume, and the number of pixels in the 
search volume will be designated SV. 

Linear, sinusoidal, and AR coefficients were individu- 
ally estimated for each time series in the search volume, 
and the sinusoidal coefficients used to derive estimates 
of power at the fundamental and harmonic frequencies. 
The observed distribution of the linear and AR coeffi- 
cient estimates are summarized by box plots in Fig. 9a. 
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I I 

Linear and AR(1) Coefficients 
a 

Log Power 
b 

FIG. 9. (a) Box plots of the linear trend coefficient @) and first 
order AR coefficient (b estimated at 1811 pixels in a 2D image 
acquired during photic stimulation. @) Box plots of log power at 
various frequencies estimated as above. From left to right: log 
power at the fundamental frequency, the first and second har- 
monic frequencies. 

The distribution of B is approximately symmetrical; the 
distribution of t is slightly positively skewed. The non- 
negative values of power at the fundamental and har- 
monic frequencies were log transformed before box plot- 
ting (Fig. 9b). The spatial distributions of &, B, t, FP, PI, 
and P2 over all 1811 pixels in the search volume are 
shown by descriptive parametric maps in Fig. 10. It can 
be seen that large positive values of log FP and log P2 are 
concentrated at pixels representing occipital cortex; and 
positive values of g tend to be found at pixels at least 
partly representative of cerebrospinal fluid (CSF). 

INFERENCE 
Ascertaining the Null Distribution 

Assume, for the moment, that the experimental effect in 
fMRI time series may be well estimated by sinusoidal 
power, FP, at the (fundamental) frequency of stimulation. 
The next question is how to decide, on the basis of 
fundamental power, whether or not a given pixel is acti- 
vated. In keeping with general principles of probabilistic 
decision making, we can derive a fundamental power 
quotient, FPQi = FPi/SE(FPi), from the estimate of fun- 
damental power, and its standard error, at each pixel; 
and refer each pixel’s observed power quotient to the 
distribution of FPQ under a null hypothesis. A good 
choice of form for the null distribution of FPQ is clearly 
essential to success, and there are arguably three ways we 
can ascertain this null distribution: (i) by theory, (ii) by 
experiment, (iii) by randomization. In this section, we 
briefly discuss the relative merits of these three alterna- 
tives. 

The quickest and cheapest method is to derive a para- 
metric form for the null distribution from normal theory. 
From Eqs. [7] and [11] above, we have 

From the matrix (X*TX*)- for 5 in the range [ O ,  11, the 
difference between SE(.jr) and SE(8) is never greater than 
0.5%. We neglect this small difference and assume that 
the standard errors of +and 8 are equal, i.e., SE(9) = SE(8) 
= SE; we can then rewrite Eq. (161: 

If we further assume that, under the null hypothesis, 
the quotients jdSE and 8/SE are sampled from a t distri- 
bution, which is approximately standard normal when 
the number of points in each fMRI time series is in the 
order of 100, then the squared quotients will each be 
distributed under the null hypothesis as xz  with 1 df, and 
the theoretically derived null distribution of FPQ is 
therefore: 

?* FPQ - -; 2 
that is, a scaled X’ distribution with 2 df. (For N << 100, 
a closer approximation would be the F distribution with 
2 and N-2 df). 

The experimental way of ascertaining the null distri- 
bution is the most expensive, but arguably the least ap- 
proximate, of the three alternatives. Before or after acqui- 
sition of an image during periodic sensory stimulation, 
an image can be identically acquired under conditions 
that would not be expected to determine any periodic 
response. Power in the time series at each pixel of this 
null image can then be estimated, and the distribution of 
FPQ under a less formal null hypothesis, that observed 
values of FPQi are not determined by periodic stimula- 
tion, can be directly sampled. One attraction of this ap- 
proach is that values of FPQi in the null image will be 
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FIG. 10. Descriptive parametric maps. (a) intercept, &; (b) linear trend coefficient, p; (c) first order AR coefficient, & (d) log fundamental 
power, FP; (e) log first harmonic power, P1; (9 log second harmonic power, P2. The limits of the color range, from dark blue to dark orange, 
correspond to minimum and maximum observed values of each parameter. All maps are orientated with the left posterior quadrant of the 
brain at the upper right quadrant of the map. 

spatially autocorrelated, and experimental ascertainment 
should therefore yield a null distribution that reflects the 
degree of nonindependence in the observed FPQ,s. 

Finally, it is possible to ascertain the null distribution 
by randomization; that is, by randomly reorganizing the 
order of signal intensity values in each observed time 
series and estimating FPQ for each randomized time 
series. Values of FPQ, in the randomized series will not 
be determined by periodic stimulation, so the random- 
ized null distribution of FPQ can be used to test the same 
(relatively informal) null hypothesis as the experimental 
null distribution. 

We experimentally ascertained the FPQ distribution 
from 1961 estimates of FPQi in a single 2D slice of the 
null image (see Images for details of acquisition param- 
eters and experimental design), and compared this to the 
null distributions obtained (i) by independently, ran- 
domly permuting each time series in the null image; and 
(ii) by randomly sampling 1961 values from the theoret- 
ical null distribution. The location and variance of the 
theoretical null distribution were significantly different 
from the location and variance of both the experimental 
and randomized null distributions (Wilcoxon test statis- 
tics = 2.43 and 3.38, respectively, P < 0.05 in both cases; 

F = 0.62 and 0.62, respectively (df 1960,1960), P < 0.05 
in both cases); whereas, there was no significant differ- 
ence, by the same tests of location and variance, between 
the experimental and randomized null distributions 
(Wilcoxon test statistic = -0.94, P = 0.34; F = 0.99 (df 
1960, 1960), P = 0.9). 

We conclude that, although it is the least costly to 
ascertain, the theoretical null distribution is an unaccept- 
ably imperfect approximation to the “gold standard” of 
the experimental null distribution. Randomization, on 
the other hand, yields a null distribution virtually indis- 
tinguishable from that obtained by estimating FPQi at 
each pixel of the (spatially correlated) null image; and, 
although computationally more time demanding than 
experimental ascertainment, it is more economical in 
terms of scanner time. The randomized null distribution 
thus seems to represent the best balance between approx- 
imation and cost. 

Randomization Testing 

Test quotients, nQi, were derived for each parameter 
estimate ll = (8, t, FP, PI, PZ), at each pixel, by the 
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general formula: 
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where SE(II,) is the standard error of parameter estimate 
n at pixel i = 1,2,3,. . . , SV. 

Our null hypothesis was that the observed values of 
lIQ, were not determined by periodic sensory stimula- 
tion; or, to put it another way, could equally have arisen 
by chance. This hypothesis was judged untenable, and a 
given pixel was consequently said to be activated if HQ, 
exceeded a threshold value for that quotient, designated 
CV. Randomization testing was used to set the critical 
value such that, under the null hypothesis, the resulting 
inferential brain activation map (BAM) would include an 
arbitrary number of false positive pixels, expected to be 
"activated" by chance. 

In the case of the 2D image slice already described, 
each time series in the search volume (SV = 1 811) was 
independently permuted once to yield a set of 1811 ran- 
domly reorganized time series. The randomized time se- 
ries were then subject to analysis in exactly the same way 
as the observed time series, producing a randomized 
distribution, R, for each estimated parameter's test quo- 
tient. Permutation of the observed time series and anal- 
ysis of the resulting randomized series could be repeated 
NPERM times, so that the ultimate size of the random- 
ized distributions was NPERM * SV = RAN. 

To derive appropriate critical values, CV, from the 
corresponding randomized distribution, R, one must first 
set the level of significance, or pixel-wise probability of a 
false positive, a. For a one-tailed test (of the condition 
that nQi > CVuPPe'), CVuppor is then defined as the 
(1-a)th quantile in the randomized null distribution. For 
a two-tailed test (of the condition that HQi < CVlower or 
IIQ, > CVupper), CVuppQr and CVlower are defined as the 
(1 -a/2)th and (a/2)th quantiles, respectively, in the ran- 
domized null distribution. 

We applied these principles (see refs. 8, 9 for general 
introductions to randomization testing) to inferential 
mapping of test quotients derived from the parameter 
estimates 8, t, FP, P1 and P2. A randomized distribution 
for each parameter's test quotient was generated by 10 
permutations of the observed data, so that RAN for each 
R was 10*1,811 = 18,110. In other words, the 100 points 
in each observed time series were permuted 10 times to 
yield 10 randomized time series. This operation was 
repeated independently at each pixel in the image, yield- 
ing 10 randomized images that had temporal activity 
under the null hypothesis but the same expected spatial 
structure as the observed image. 

Because the linear (8) and AR (t) coefficient estimates 
could have both negative and positive values, two-tailed 
tests were applied pixel-by-pixel to BQi and ZQ,. Because 
power at any frequency can have only positive values, 
significance of FPQi, PlQ,, and P2Qi was assessed by a 
one-tailed pixel-by-pixel test. For each of the maps in 
Fig. 11, a = 5.5 * this is equivalent to one false 
positive pixel per image under the null hypothesis. Table 
3 gives the corresponding critical values, ascertained by 
randomization and theory, for the tests of each quotient. 

FIG. 11. Inferential brain activation maps (BAMs). The probable 
number of error pixels pe r  image (eppi) is 1; a = 5.5 * lo-". (a) 
Linear trend quotient, p0; (b) first order AR quotient, JQ; (c) 
fundamental power quotient, FPQ. Activated pixels are colored 
and superimposed on a gray scale map of the intercept terms (2) 
estimated by PGLS fitting of the multiple regression model at each 
pixel. R e d  indicates the pixel locations of quotient values that 
exceeded the upper critical value in a one- or two-tailed test: 
green indicates the locations of quotient values that were less than 
the lower critical value in a two-tailed test. BAMs for power at the 
first and second harmonic frequencies are not shown because in 
neither case was more than 1 pixel activated, as expected by 
chance. All maps are orientated with the left posterior quadrant of 
the brain at the upper right quadrant of the map. 

Sensitivity and Specificity of Brain Activation Maps 

If the expected number of error pixels per image (eppi) is 
initially set greater than 1, less specific but more sensi- 
tive maps of regional brain activation are generated. Fig- 
ure 12 illustrates six versions of the brain activation map 
(BAM), derived from the fundamental power quotient, 
with the expected number of error (false positive] pixels 
per image, eppi, ranging from 1 to 100. Table 4 gives the 
pixel-wise probability of Type I error, a; threshold value, 
CVUppor; and number of activated pixels, NPIX, for each 
map. 

The specificity of each map is 1 -a; and its sensitivity 
is 1 -p, where a is the probability of type I error (or a false 
positive pixel), and p is the probability of Type I1 error 
(or a false negative pixel). To estimate p for each BAh4j in 
Fig. 12  ( j  = 1,2,  3,4,5, 6), we need to know the number 
of pixels that represent regions of the brain physiologi- 
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Table 3 
Critical Values (CV) of the Randomizeda and Theoretical Null 
Distributions of Linear (PO). AR (LO), and Fundamental and 
Harmonic Power (FPQ, P1 Q, P 2 0 )  Quotients 

C W ~ '  c ~ o w a r  b Test 
PQ 2 tailed 4.09 -4.07 

(3.46) -3.46) 
iQ 2 tailed 2.96 -4.42 

(3.46) -3.46) 
FPO 1 tailed 1 1.33 

(7.37) 
P10 1 tailed 9.34 

(7.37) 
P20 1 tailed 8.52 

(7.37) 

a Size of the randomization distributions = 18,110 eppi = 1; SV = 1,811; 

Critical values derived from the theoretical null distribution are given in 
parentheses. To obtain these values, pQ and [Q are assumed to be nor- 
mally distributed; FW. PlQ, and P2Q are assumed to be distributed 
approximately as J2 divided by 2 (see text for details). 

(I = 5.5 . 10-4. 

cally activated by the experimental stimulus; this num- 
ber, NTRUE, is the size of the target population of pixels 
we wish to identify as activated. NTRUE is the sum of the 
number of pixels correctly classified as activated, CA, 
plus the number of pixels incorrectly classified as unac- 
tivated, IU, i.e., NTRUE = CA + IU. The number of pixels 
actually classified as activated in a given map, NPIX, is 
the sum of the number of pixels correctly classified as 
activated, CA, plus the number of pixels incorrectly clas- 
sified as activated, IA, i.e., NPIX = CA + IA. Combining 
these two equations, we have 

NTRUE = NPIX + IU - IA. DO1 

The expected value of IA is approximately a (SV- 
NTRUE); and the expected value of IU is p NTRUE. 
Substituting into Eq. [20], we have 

NTRUE = NPIX - a(SV - NTRUE) + PNTRUE. [21] 

If we assume that in BAM", with NPIX = 306, eppi = 100, 
and a = 0.055, all the pixels in the target population have 
been identified as activated (i.e., p = O), we can estimate 
the number of physiologically activated pixels in the 
image, NTRUE, from Eq. [21] as 218. We can then rear- 
range the same equation to solve for sensitivity, (l-p), 
with NTRUE given: 

sv ). [22] 
NPIXi l - p = - - - - - + a /  

NTRUE '( NTRUE 

Substituting the estimated value of NTRUE into Eq. 
[22], we can estimate the sensitivity (1 -py for each of the 
other five brain activation maps in the series (see Table 
4). Figure 13 shows receiver operating characteristic 
(ROC) curves of sensitivity (1-p) versus false positive 
rate (a) for each map. Over the first three maps in the 
series, it can be seen that as the false positive rate in- 
creases incrementally (from 5.5 * 2 0 - ~  to 5.5 * lo-"), 
sensitivity increases substantially (from 0.28 to 0.52). If it 
is of paramount importance that regional brain activation 
should be depicted specifically, but not with undue ex- 
clusivity, then clearly the third map (with eppi = 10, a = 

5.5 * lo-") is the optimal representation among those in 
this series. 

If, instead of optimistically assuming that /3 is zero in 
the BAM with a = 0.055, we allow that p at that level of 
a! may be, say, 0.1, or 0.25, we can obtain comparable 
curves of sensitivity versus false positive rate. As shown 
in Fig. 13, this family of ROC curves suggests that, re- 
gardless of the precise value of p in the range [O, 0.251 the 
gain in sensitivity as eppi is increased from 1 to 10 is 
substantially greater than the concomitant loss of speci- 
ficity; and, for a given curve, the rate of increase in 
sensitivity decreases as a function of eppi. In other 
words, assuming only that p < 0.25, a - will 
generally be a good choice for the pixel-wise probability 
of false positive activation. 

Computational Aspects 

A program was written in the C language to run under 
UNIX on a network of Sun SPARCstations (Sun Micro- 
systems Inc., California). The program estimates experi- 
mentally determined power by PGLS fitting a sinusoidal 
regression model, and infers significance of activation by 
randomization testing. Standard C functions for OLS fit- 
ting by the Gauss-Jordan algorithm, for random number 
generation, and for sorting of the randomization distri- 
butions (13), were incorporated. The higher level S-PLUS 
language (18, 24, 25) was used for exploratory analysis 
and graphics. C shell scripts (26) were used to generate a 
user interface, to coordinate calls to image read and write 
functions, and to control batch processing. 

The time taken to analyze a single 128 X 64 X 100 
image in this way is largely dependent on the number of 
times the observed time series are randomly permuted to 
generate the randomized distributions, Iw. It is generally 
recommended that the size of the sampled randomiza- 
tion distribution (RAN) should be related to the proba- 
bility of Type I error in an individual test (27). For a - 
0.05, RAN should be at least 5,000; and for a - 0.001, 
RAN should be at least 10,000. We wished to create maps 
over a range of Type I error probabilities, with the most 
conservative map having a - We therefore per- 
muted the observed time series 10 times to generate 
randomized distributions of size 18,110; and empirically 
confirmed that this size of distribution was sufficient to 
give stable or convergent critical values for a one-tailed 
test of the condition: FPQi > CV'PP'''. 

Central processing unit time for estimation, inference 
after 10 permutations, and mapping, is approximately 9 
min on a Sun SPARC 10 workstation for a single 2D 
image: processing time for a 10-slice volume is therefore 
approximately 1.5 h. If inference at the most conservative 
level of significance is not required, then the number of 
permutations can be correspondingly reduced, and pro- 
cessing time abbreviated. 

MAPS 

So far, we have described development and application 
of our methods in the context of a few 2D functional MR 
images. To illustrate the general applicability of these 
methods, and to provide some informal proof of their 



BAM Brain Activation Mapping for WRI 273 

FIG. 12. Six brain activation maps of the fundamental power quotient with different numbers of error pixels per  map. (a) eppi = 1; (b) eppi 
= 5; (c) eppi = 10; (d) eppi = 25; (e) eppi = 50; (9 eppi = 100. For other inferential statistics concerning these images, see Table 4. All 
maps are orientated with the left posterior quadrant of the brain at the upper right quadrant of the map. 

validity, the brain activation maps obtained from a num- 
ber of other studies of the visual system are shown in Fig. 
14; the figure legend incorporates some commentary on 
these maps. 

DISCUSSION AND CONCLUSIONS 

In this paper, we have presented two main methodolog- 
ical innovations in analysis of functional MRI time se- 
ries: estimation of the experimentally determined effect 
by sinusoidal regression modeling; and inference of sig- 
nificant activation by randomization testing. 

Modeling 
In an fMRI study of periodic sensory stimulation, the 
experimenter has control over the frequency of stimula- 
tion, and it is natural to suppose that a cardinal feature of 
the experimentally determined effect will be a periodic 
trend in fMRI time series at the frequency of stimulation. 
All methods of fMRI analysis previously discussed have 
this basic premise in common. However, the experi- 
menter will not have control over the phase or waveform 
of the periodic trend he or she seeks to measure in the 
data. A box-car input function may elicit an instanta- 

neous (zero phase) and identically shaped (square) out- 
put function at the level of neuronal activation; but we 
cannot directly observe such a pristine neural response 
by fMRI, even if it occurs (4). The output functions we 
can observe are less ideal, having been heniodynamically 
modulated. In other words, the phase and waveform of 
the putative neural response have been altered by a he- 
modynamic response function. This heniodynamic re- 
sponse function is obviously not under direct experimen- 
tal control; and, although it has not pet been well 
characterized physiologically, it is probably locally vari- 
able. The estimation problem is therefore how to measure 
the size of a periodic trend that has a determined and 
consistent frequency, but undetermined and inconsistent 
phase and shape, over several thousand pixels in an 
image. 

The approach we have developed is to measure the 
size of the experimental effect by fitting a sinusoidal 
regression model to the time series at each pixel. The 
main advantage of this method is that a periodic trend of 
given size will be equally well estimated whatever its 
phase and, to a lesser extent, whatever its shape. This is 
in contrast to some other methods of estimation, which 
by assuming a priori that the phase and shape of response 
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Table 4 
Inferential Statistics for Pixel-by-Pixel One-Tailed Tests of the Fundamental Power Quotient, FPQ, in Each of Six Brain 
Activation Maps" 

SensitivityC 
(1 -P)  

ePPi a CVW'  NPlX 

1 5.5 . 10..4 
5 2.8 . 10-3 
10 5.5 . 10-3 
25 1.4 * lo-* 

50 2.8 * lo-* 

100 5.5 10-2 

11.33 63 
(7.37) 
7.67 105 
(6.03) 
6.58 123 
(5.29) 
5.33 166 
(4.30) 
4.42 222 
(3.59) 
3.50 306 
12.89) 

0.28 

0.46 

0.52 

0.66 

0.80 

1 

Specificty 
(1 -4 
0.99 

0.99 

0.99 

0.98 

0.97 

0.94 

a RAN = 18, 110; SV = 1,811. 
Critical values derived from the theoretical null distribution are given in parentheses. 
Assuming p = 0 when (I = 0.055 (see text for details). 

0.0 0.01 0.02 0.03 0.04 0.05 0.06 
False Positive Rate (alpha) 

FIG. 13. Plots of sensitivity (1 -p) versus false positive rate (a) for 
each brain activation map shown in Fig. 12, assuming various 
values for p when a = 0.055. Long dashed line, p assumed = 0; 
short dashed line, p assumed = 0.1; dotted line, p assumed = 
0.25. 

is the same over the whole image, will yield biased 
estimates of the size of the experimental effect at pixels 
where the phase or shape happens to differ from expec- 
tation (see Fig. 8).  

Another way of framing this comparison is in terms of 
the amount of information about each time series in the 
image that results from estimating the experimental ef- 
fect in various ways. If we assume a priori that we know 
the phase and shape of response over the whole image 
then of course we cannot detect any differences in phase 
and shape of response that there may in fact be between 
pixels; whereas, by sinusoidal regression, one can obtain 
estimates of the phase and (in terms of relative power at 
harmonic frequencies) the shape of response individu- 
ally for each pixel. Such extra information might well 

prove to be of value in identifying structure within a set 
of activated pixels; for example, one could construct the 
correlation matrix for the power and phase descriptors 
estimated at each activated pixel and use this as the basis 
for a principal component or factor analysis to elucidate 
patterns of functional connectivity (28). At least until 
such possibilities have been explored, it seems impru- 
dent to prefer less informative (as well as less precise] 
methods of estimation. 

Sinusoidal regression is not the only way in which 
spatially varying delay and dispersion can be accomo- 
dated in estimation of the experimental effect. It is pos- 
sible, for example, to refine the method of Friston et 01. 

(4) so that the Poisson parameter, A, is individually esti- 
mated at each pixel; and this has been shown to yield 
more focused maps of brain activation than are obtained 
by assuming that A is spatially invariant (29). But a sinu- 
soidal regression model has the distinctive advantage of 
being linear, and therefore quick to fit. There are, how- 
ever, technical issues to consider concerning the most 
appropriate choice of fitting procedure. 

We have shown that the residuals of an ordinary least 
squares fit may often be (first order) autocorrelated. Re- 
sidual autocorrelation is demonstrable in an image ac- 
quired without the subject being exposed to periodic 
sensory stimulation, and generally seems to be most ev- 
ident in time series observed at pixels at least partly 
representative of cerebrospinal fluid. One explanation 
for these observations is that residual autocorrelation is 
an endogenous phenomenon, perhaps related to pulsa- 
tion of CSF or blood vessels. It is theoretically predict- 
able that signal changes at the frequency of the cardiac 
cycle, when aliased to the frequency range sampled with 
TR = 3 s, should be manifest as positive autocorrelation; 
and, if the cardiac cycle is indeed the source of residual 
autocorrelation, a longer repetition time might be ex- 
pected to alleviate the problem (albeit at the cost of 
temporal resolution of experimentally determined signal 
change). But, whatever the cause of residual autocorrela- 
tion, the fact of its presence in these data renders OLS 
insufficient as a means of model fitting. The alternative 
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FIG. 14. Brain activation maps obtained from the null image and several pilot studies of the visual system. All maps are orientated with 
the left anterior quadrant of the brain at the upper right quadrant of the map. Maps of (a) {Q and (b) F W  (eppi = 10) obtained from a single 
slice of the null image. Note that even after image realignment, and in the absence of periodic sensory stimulation, there is significant 
positive autocorrelation in excess of chance expectation. The number of pixels in the map of F W  is 8, 2 less than expected by chance. 
Maps of F W  (eppi = 5) obtained from comparable slices of two images acquired during photic hemifield stimulation: (c) the map obtained 
from left hemifield stimulation, showing predominantly right sided occipital cortex activation; (d) the map obtained from right hemifield 
stimulation, showing predominantly left sided occipital cortex activation. (e) Map of F W  (eppi = 1) obtained from an image acquired 
during visual perception of motion. Cortical activation is mainly localized to the region of the lateral occipital sulcus and inferior temporal 
sulcus. (t) M a p  of F W  (eppi = 5) obtained from a single slice of an image acquired during bimodal (visual and auditory) stimulation. Pixels 
activated by auditory stimulation are colored red, and are mainly located in bilateral temporal regions; pixels activated by visual stimulation 
are colored blue. 

procedure we have used, known as PGLS, is essentially 
iterated OLS; but, between the first and second OLS fit, 
the original terms of the model are transformed with 
respect to first order autocorrelation in the residuals of 
the first fit. We have shown that the residuals of the 
second OLS fit are independent and normally distrib- 
uted this means that the maximum conditional likeli- 
hood estimates of the model parameters obtained by 
PGLS are best unbiased estimates of those parameters, 
and a valid basis for inference. There are other fitting 
procedures (e.g., nonlinear optimization) that might be 
used to obtain parameter estimates with equally desir- 
able statistical properties, but we have preferred PGLS on 
the grounds of greater computational speed. 

In the future, it will be particularly interesting to ex- 
plore an aspect of fMRI time series analysis that has not 
so far been considered. Our method of estimating the 
experimental effect [in common with the other methods 
discussed) assumes that signal intensity changes due to 
sensory stimulation are not just periodic, but tonically 

periodic. In other words, we assume that the amplitude 
of response to the first presentation of the stimulus is the 
same as the amplitude of response to the last (e.g., fifth) 
presentation of the stimulus. Yet this may not always be 
the case. We have, for example, observed time series 
during photic stimulation that showed a phasic, habitu- 
ating pattern of response; the amplitude of the first few 
experimentally determined cycles being much greater 
than the amplitude of the last few cycles. This suggests 
that the rate at which periodicity in fMRI time series 
decays over the course of image acquisition may be lo- 
cally variable, and perhaps functionally relevant. One 
approach to estimation of this decay rate would be to 
multiply the regression model by an exponential term. 

Decision Making 

Creating brain activation maps can be regarded as an 
exercise in binary decision making: for each pixel in the 
image we have to decide whether it is activated or not. 
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We have preferred to make this decision by referring the 
value of the fundamental power quotient observed at 
each pixel, FPQi, to its null distribution, ascertained by 
independently, randomly permuting each time series in a 
given 2D image slice. It is reasonable to wonder whether 
this technique is both necessary, given the far greater 
speed of significance testing by asymptotic theory, and 
sufficient, given that observed values of FPQ will prob- 
ably be spatially correlated (29). 

We have addressed these questions by an experiment. 
An image was acquired (at a financial cost) while the 
subject was not exposed to any periodic sensory stimu- 
lation, and FPQ, was estimated for each pixel. We as- 
sumed that the resulting distribution of FPQ was the best 
possible approximation to the true form of the null dis- 
tribution, because it had been directly sampled from a 
spatially correlated image while the null hypothesis (that 
observed values of FPQ, were not determined by periodic 
stimulation] was patently true. In relation to this exper- 
imental null distribution, the theoretical null distribu- 
tion (though relatively cheap and quick to ascertain) was 
found to be inadequately approximate: whereas the form 
of the randomized null distribution was virtually indis- 
tinguishable from that of the experimental “gold stan- 
dard.” On this basis, randomization seems both neces- 
sary and sufficient to cope with significance testing in 
fMRI analysis. 

It is conceivable that, in future, we may understand 
why the theoretical null distribution differs to the extent 
that it does from both experimental and randomized null 
distributions; in which case, it may be possible to obtain 
appropriate critical values more speedily than by ran- 
domization and more cheaply than by experiment. Mean- 
while, we do not consider the computational costs of 
randomization to be impractical. Running compiled (C) 
code on a Sun SPARC 10 workstation, it takes approxi- 
mately 1.5 h to process entirely a volume of 10 2D func- 
tional MR image slices. Furthermore, the integrated pro- 
gram for sinusoidal regression modeling and 
randomization testing has been incorporated in a C shell 
script for batch processing. This makes it convenient to 
process several volumes overnight, using machines that 
would otherwise be idle. The financial cost is minimal. 

The general strategy of decision making by randomiza- 
tion is also adaptable to more complex situations, where 
we wish to model the spatiotemporal process in an im- 
age. The theoretical null distribution may then be (even 
approximately) intractable. For example, it is very likely 
that truly activated pixels will tend to be spatially clus- 
tered, while falsely “activated” pixels will tend to be 
spatially dispersed. We might therefore be able to en- 
hance the decision making process by incorporating in- 
formation about each pixel’s spatial context, as well as its 
own time series. An attractive way of making such higher 
dimensional decisions is to estimate a spatial statistic, 
that somehow describes clustering in the neighborhood 
of each pixel, as well as estimating a time series statistic, 
such as FPQ, to describe the experimental effect inde- 
pendently at each pixel. It is a daunting problem to 
derive from theory a good form for a bivariate null dis- 
tribution, against which to test the two (spatial and tem- 
poral) statistics estimated for each pixel in the image. Yet 

it has already been shown (30) that such bivariate null 
distributions can be ascertained by Monte Carlo simula- 
tion for PET images, and the resulting brain activation 
maps are more sensitive than those obtained by methods 
that ignore the spatial dimensions of the data. We are 
working on an analogous development of randomization 
testing to enhance decision making in fMRI analysis. 
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ERRATUM 

In the article “A Model for Magnitization Transfer in Tissue,” by C. Morrison and 
R. M. Henkelman (Vol. 33, 475-482, 1995), Table 3 shows incorrect value for muscle. 
The corrected values are MAX MT = 0.66, Amax = 13.6 (kHz), 27rwlmax = 850 (Hz), R = 
70 2 4 (s-’), l/R,T,, = 22 2 4, and TZB = 7.6 2 0.5 (ps). All other values are as 
originally published. 

Dr. Simon Graham is thanked for discovering this error. 




