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ABSTRACT
BACKGROUND: Although many studies have explored atypicalities in gray matter (GM) and white matter (WM)
morphology of autism, most of them relied on unimodal analyses that did not benefit from the likelihood that different
imaging modalities may reflect common neurobiology. We aimed to establish brain patterns of modalities that
differentiate between individuals with and without autism and explore associations between these brain patterns and
clinical measures in the autism group.
METHODS: We studied 183 individuals with autism and 157 nonautistic individuals (age range, 6–30 years) in a large,
deeply phenotyped autism dataset (EU-AIMS LEAP [European Autism Interventions—A Multicentre Study for
Developing New Medications Longitudinal European Autism Project]). Linked independent component analysis
was used to link all participants’ GM volume and WM diffusion tensor images, and group comparisons of modality
shared variances were examined. Subsequently, we performed univariate and multivariate brain-behavior
correlation analyses to separately explore the relationships between brain patterns and clinical profiles.
RESULTS: One multimodal pattern was significantly related to autism. This pattern was primarily associated with GM
volume in bilateral insula and frontal, precentral and postcentral, cingulate, and caudate areas and co-occurred with
altered WM features in the superior longitudinal fasciculus. The brain-behavior correlation analyses showed a
significant multivariate association primarily between brain patterns that involved variation of WM and symptoms
of restricted and repetitive behavior in the autism group.
CONCLUSIONS: Our findings demonstrate the assets of integrated analyses of GM and WM alterations to study the
brain mechanisms that underpin autism and show that the complex clinical autism phenotype can be interpreted by
brain covariation patterns that are spread across the brain involving both cortical and subcortical areas.

https://doi.org/10.1016/j.bpsc.2022.08.011
Autism spectrum disorder (autism) is a heterogeneous condi-
tion characterized by difficulties with social and communica-
tive behaviors, repetitive, rigid behaviors, and altered sensory
processes (1). In search of the brain basis of autism, the
condition has been associated with multiple morphological
differences in gray matter (GM) and white matter (WM) (2,3), as
reported by magnetic resonance imaging (MRI) studies. How-
ever, previous studies have shown heterogeneous findings of
the alterations in both cortical (e.g., cortical thickness, surface
area, volume) and subcortical (e.g., volume) morphometry in
multiple brain regions, making it difficult to define the neural
correlates of autism (3–5). Additionally, voxelwise GM volume
analyses revealed divergent results, for instance, in temporal
areas in autism (6–8). Studies of WM microstructural associa-
tions in autism are similarly heterogeneous in their findings
(2,9,10). One explanation for discrepant and heterogeneous
findings is that the studies differ widely in data analytic
ª 2022 Society of Biological Psychiatry. Published by Elsevier In
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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strategy—i.e., these studies rely on unimodal analysis tech-
niques that ignore the signal of interest probably present in
more than one modality (11). Additionally, when integrated
together, these modalities might provide additional analytical
sensitivity.

This prompted research to move beyond unimodality and
incorporate and connect data from different imaging modal-
ities. For example, Cauda et al. (12) suggested that GM vari-
ation in autism is generally accompanied by WM variation;
Ecker et al. (13) showed higher axial diffusivity (L1) in the WM
fiber tracts originating and/or terminating in the GM clusters
with increased local gyrification in adults with autism. Despite
the progression away from unimodal approaches, in essence,
these MRI studies that correlate GM and WM measures do so
after separate unimodal statistical analyses. This likely has less
sensitivity to assess the biological variance than fully inte-
grating multimodal data analysis across participants.
c. This is an open access article under the
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It is assumed that a relatively high level of co-occurring
neurobiology underlying different aspects of brain
morphology is due to the complicated nature of autism.
Therefore, efficient modeling of this potential shared variance
would increase the chances to produce a more complete
picture of autism in a specific perspective (i.e., brain
morphology in our study). Here, we aimed to use an inte-
grative multimodal approach, linked independent component
analysis (LICA), to simultaneously incorporate several imag-
ing modalities allowing the investigation of intersubject
variability across modalities in one analysis (14,15), which
enables the isolation of artifacts and may increase the
sensitivity to correlate the remaining signals with variables of
interest (14). So far, studies that highlight the underlying
shared variance between modalities using LICA in autism
remain scarce. Previous studies revealed case-control dif-
ferences between adults with autism and typically devel-
oping individuals in linked patterns of voxel-based
morphometry (VBM) and diffusion tensor imaging (DTI)
measures in several brain regions (16,17). However, these
studies focused exclusively on autistic adults without intel-
lectual disability and comprised relatively small sample sizes
(,100 individuals) (16,17). Autism is a highly diverse condi-
tion; we therefore investigated brain patterns in a broader,
more representative autism sample, which might help better
characterize brain patterns of autism, which is one of the
aims of the current study. We hypothesized that the model
analysis would reveal the autism-related regional corre-
spondence between GM and WM or modality-specific effect.

In addition to identifying categorical group differences,
dimensional analyses, i.e., analyses of continuous scores of
autism symptoms, might capture more of the heterogeneity of
autism compared with categorical diagnostic labels. Many
studies have demonstrated the univariate connections be-
tween GM or WM patterns and the core symptoms of autism
[e.g., (2,3)]. Nonetheless, the relationships between brain
substrates and clinical phenotypes are potentially the outcome
of integrative effects across multiple autism symptom domains
and brain areas, and therefore the multidimensional associa-
tions between brain covariations and core symptoms of autism
need to be clarified. We therefore performed univariate ana-
lyses to identify the one-to-one dimensional associations and
additionally implemented a multivariate analysis using canon-
ical correlation analysis (CCA) to learn the integrated associ-
ations (18). Similarly, we furthermore expected that CCA would
help to elucidate the potential correlation between brain and
behavior.

This study was designed to overcome the aforementioned
limitations of previous work by applying LICA to the Longitu-
dinal European Autism Project (LEAP) dataset (19) to link the
sources of variance of voxelwise GM volume and WM diffusion
tensor measures. The LEAP dataset provides a deeply phe-
notyped and comprehensively biologically assessed multisite
sample of individuals with and without autism that allows
relating the results of LICA to clinical characteristics of the
participants. More specifically, we applied 1) a univariate
approach to identify categorical group differences of linking
brain patterns and subsequently their one-to-one relationships
to continuous measures of autism symptoms and 2) a multi-
variate method (i.e., CCA) to further quantify the association
Biological Psychiatry: Cognitive Neuroscience and Neuroima
between two sets of brain patterns and autistic traits in the
autism group.

METHODS AND MATERIALS

Participants

The participants were part of the EU-AIMS (European Autism
Interventions—A Multicentre Study for Developing New Med-
ications) and AIMS-2-TRIALS (Autism Innovative Medicine
Studies-2-Trials) LEAP dataset, a large multicenter study
aimed at identifying and validating biomarkers in autism
(19,20). Individuals with autism were included based on an
existing clinical diagnosis according to DSM-IV, DSM-IV-TR,
DSM-5, or ICD-10. Each participant underwent clinical,
cognitive, and MRI assessment at one of 6 collaborative
centers. Readers are referred to earlier EU-AIMS LEAP publi-
cations (19,20) for further details on experimental design and
clinical characterization. In the present study, diffusion-
weighted imaging data at time point 1 were available from
participants in only 3 centers. Therefore, participants were
selected who had both T1-weighted and diffusion-weighted
imaging data available from the following centers: Institute of
Psychiatry, Psychology and Neuroscience, King’s College
London, United Kingdom; Radboud University Medical Centre,
Nijmegen, the Netherlands; and Central Institute of Mental
Health, Mannheim, Germany (Supplement Section 1).

The final sample comprised 344 participants between 6
and 30 years of age, including 185 autistic individuals
(133 male and 52 female, IQ $40) and 159 nonautistic in-
dividuals (99 male and 60 female, IQ $50). The demographic
and clinical information of the final sample is summarized
in Table 1. For detailed exclusion criteria, see Supplement
Section 2.

Clinical Measures

The Autism Diagnostic Interview–Revised (ADI-R) (21) and the
Autism Diagnostic Observational Schedule, Second Edition
(ADOS-2) (22) were used to measure the past (ever and pre-
vious 4–5 years) and current core autism symptom severities in
social interaction, communication, and restricted repetitive
behavior (RRB) domains. Specifically, the calibrated severity
scores for subscales and total of the ADOS-2 were calculated
to use in the following analyses (23,24). Additionally, we used
several parent-reported scales to assess autism behaviors,
including the Social Responsiveness Scale, Second Edition
(25) capturing social-communication variations, the Repetitive
Behavior Scale–Revised (26) identifying repetitive and rigid
behaviors, and the Short Sensory Profile (SSP) (27) evaluating
sensory processing variations. Concerning the potential effect
of the co-occurrence of attention-deficit/hyperactivity disorder,
anxiety, and depression, we separately included the scores
from an attention-deficit/hyperactivity disorder rating scale
based on DSM-5 (28) and anxiety and depression scores from
the Development and Well-Being Assessment (29) as addi-
tional covariates in the post hoc analyses. There was a sub-
stantial amount of missing clinical data, which could greatly
reduce the power of our analysis. To tackle the missing clinical
data and fully harness the large LEAP sample size, we used
imputed clinical data (30). The imputation procedure was
ging November 2023; 8:1084–1093 www.sobp.org/BPCNNI 1085
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Table 1. Demographic and Clinical Information of
Participantsa

Autism Group,
n = 185

Control Group,
n = 159 t/c2 p Value

Demographic Information

Age, Yearsb 17.30 (5.22) 17.51 (5.19) 0.369 .712

IQb,c 98.90 (20.44) 102.6 (19.10) 1.769 .079

IQ $ 75 105.47 (15.30) 107.32 (14.04) 1.083 .028

IQ , 75 66.28 (6.95) 63.88 (8.55) 20.994 .329

IQ $ 75/
IQ , 75d

154 (83.2%)/
31 (16.8%)

142 (89.3%)/
17 (10.7%)

2.620 .106

Sex, Female/
Maled

52 (28.1%)/
133 (71.9%)

60 (37.7%)/
99 (62.3%)

3.610 .057

Clinical Profiles

ADI-R

Social interaction 16.54 (6.95)

Communication 13.35 (5.57)

RRB 4.07 (2.58)

ADOS-2 CSSs

Total 5.40 (2.75)

Social affect 6.06 (2.64)

RRB 4.70 (2.77)

SRS-2 Raw
Scoree

70.80 (11.55) 55.78 (11.89)

RBS-Re 15.54 (13.54) 5.30 (6.05)

SSPe 142.16 (23.63) 166.66 (17.76)

Values are mean (SD) or n (%).
ADI-R, Autism Diagnostic Interview–Revised; ADOS-2, Autism Diagnostic

Observational Schedule, Second Edition; CSSs, calibrated severity scores; RBS-
R, Repetitive Behavior Scale–Revised; RRB, restricted repetitive behavior; SRS-
2, Social Responsiveness Scale, Second Edition; SSP, Short Sensory Profile.

aIQ and symptom profiles reported are imputed data (30).
bStatistical differences were assessed by two-sample t test. Degrees of

freedom of the two t tests were 342.
cIQ ranged from 40 to 148 in the autism group and from 50 to 142 in the control

group.
dThe differences were examined by c2 test.
eIn SRS-2, RBS-R, and SSP questionnaires, we used parent-rated report.
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developed by our colleagues who considered the potential
nonrandomness of missing data, and therefore developed
quantitative measures to assess the quality of the imputations,
and finally imputed data adopting a nonparametric tree
regression model embedded in an iterative round-robin itera-
tive schedule (30). The details of missingness of the current
sample are included in Supplement Section 3.
MRI Data Acquisition

All participants were scanned on 3T MRI scanners. High-
resolution structural T1-weighted images were acquired with
full head coverage at 1.2-mm thickness with 1.1- 3 1.1-mm2

in-plane resolution. Diffusion-weighted imaging scans were
acquired using echo-planar imaging sequence at 2-mm
thickness with 2.0- 3 2.0-mm2 in-plane resolution. MRI
data acquisition parameters are included in Supplement
Section 4.
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Image Processing

GM Volume Estimation. Structural T1 images were pre-
processed according to the CAT12 toolbox (https://neuro-jena.
github.io/cat//) pipeline in SPM12 (https://www.fil.ion.ucl.ac.
uk/spm/software/spm12/) to obtain VBM data, which is a
spatially unbiased whole-brain approach extracting voxelwise
GM volume estimations. T1-weighted images were automati-
cally segmented into GM, WM, and cerebrospinal fluid and
affine registered to the Montreal Neurological Institute (MNI)
template. A high-dimensional, nonlinear diffeomorphic regis-
tration algorithm (DARTEL) (31) was used to generate a study-
specific template from GM and WM tissue segments of all
participants and then to normalize all segmented GM maps to
MNI space with 2-mm isotropic resolution. All GM images were
smoothed with a 4-mm full width at half maximum isotropic
Gaussian kernel.

Diffusion Parameters. Diffusion-weighted images from all
sites were preprocessed using the same pipeline. Denoising
was performed using the Marchenko-Pastur principal
component analysis method (32). Subsequently, Gibbs-ringing
artifacts were removed according to Kellner et al. (33). FSL
eddy was employed to correct the eddy current–induced dis-
tortions and subject motion (34). To improve the final quality of
data and recover most of the motion artifacts, we used intra-
volume slice motion correction (35). Quality control reports
were then generated for each subject and each site (36).

Individual voxelwise fractional anisotropy (FA), mean diffu-
sivity (MD), mode of anisotropy (MO), L1, and radial diffusivity
(RA) maps were derived using dtifit in FSL (37). These 5 DTI
features were selected on account of the different aspects of
WM microstructure; for example, FA measures the degree of
anisotropic movement of water molecules, and L1 represents
the magnitude of the diffusion in the primary direction, which
are related to myelin structure or myelination. FA images were
processed using a tract-based spatial statistics pipeline
including registration of all images to FMRIB58_FA standard
space, skeletonization of the mean group WM, and projection
of each individual’s data onto the skeleton (38). The mean
skeleton image was thresholded at FA 0.2. Other DTI measures
(MD, MO, L1, RA) were projected onto the FA skeleton using
the tbss_non_FA option. All DTI data had 1-mm isotropic
resolution when entering the following data fusion model. A full
quality control report and additional preprocessing details of
the GM and WM images are included in Supplement Section 2.

Modalities Fusing Analysis

The shared inter-participant variations across 6 features (i.e.,
VBM, FA, MD, MO, L1, RA) were explored using LICA (11).
LICA is able to factorize the multiple input modalities simul-
taneously into modalitywise independent components (ICs)
while importantly constraining all decompositions to be linked
through a shared participant-loading matrix, which describes
the amount of contribution of each participant to a specific IC.
In addition to the participant-loading matrix, this method pro-
vides, per IC, a vector reflecting the contribution (weight) of
each modality and a spatial map per modality showing the
extent of the spatial variation. All mathematical algorithms of
LICA are detailed in Groves et al. (11). As the model order is
November 2023; 8:1084–1093 www.sobp.org/BPCNNI
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recommended to be less than 25% of the sample size (11,14),
80-dimensional factorization was chosen to perform LICA. A
multimodal index (39) (Supplement Section 5) was calculated
to present the contribution uniformity of the modalities in each
IC. This results in a scalar value where 0 would equate to 100%
unimodal contribution and 1 would mean equal contributions
from all modalities.

Statistical Approach

The participant loadings characterize the interindividual varia-
tions of the unimodal/multimodal effects, and in the current
study, they were used for the analyses of group differences
between autistic and nonautistic individuals and for associa-
tions with behavioral measures. Results reported in the main
text were performed using imputed data to maximize the sta-
tistical power. All analyses were replicated using the original
nonimputed data.

Case-Control Difference. A generalized linear model
(GLM) was used to examine group differences of the brain’s
inter-participant variations in LICA outputs while controlling
for age, sex, IQ, and scanner site. Multiple comparison
(number of tests = 80) correction was implemented using
false discovery rate (FDR) (p , .05) (40). In addition to
considering the effects of co-occurring conditions on case-
control difference, we separately investigated the age-by-
group, IQ-by-group, sex-by-group, and site-by-group in-
teractions and medication use effects on brain pattern(s)
with the case-control difference.

Brain-Behavior Associations. Similarly, we used a GLM
to explore the univariate associations between each IC and
subscales of ADI-R and ADOS-2, Social Responsiveness
Scale, Second Edition, Repetitive Behavior Scale–Revised,
and SSP in the autism group while controlling for age, sex,
IQ, and scanner site. We corrected for multiple comparisons
(number of tests = 80 3 number of [sub]scale[s]) with FDR (p ,

.05). Subsequently, we used one CCA (18) to better picture the
overall association between all brain ICs and subscales of ADI-
R and ADOS-2 and total scores of Social Responsiveness
Scale, Second Edition, Repetitive Behavior Scale–Revised,
and SSP in the autism group. CCA is a multivariate approach
to simultaneously learn 2 sets of linear projections corre-
sponding to the brain ICs and the behavioral profiles, which
maximizes the correlation between 2 sets of variables at the
participant level. In such maximized correlation, the evaluation
of brain-behavior relationships is based on the respective
contribution of each IC and each behavioral profile to the
correlation, which can be measured by the loading of each
variable (transformed from canonical coefficient) described
previously (41). Additionally, the canonical variates are calcu-
lated respectively for the brain and the behavioral sets ac-
cording to the product of the canonical coefficients and the
original sets. In this study, we referred to each pair of canonical
variates as CCA mode. Before entering the CCA model, age,
sex, IQ, and scanning site were controlled for both brain and
behavior profile sets using the Huh-Jhun residualization
method (42,43). The statistical significance of CCA modes was
assessed by a complete permutation inference algorithm
Biological Psychiatry: Cognitive Neuroscience and Neuroima
proposed by Winkler et al. (43), where both brain and behavior
data were permuted separately across all participants with
10,000 iterations. For multiple testing correction of each CCA
mode, we used a stepwise cumulative maximum approach (p
, .05) [see details in (43)]. We further tested the reliability of the
CCA findings and the stability of each loading of the significant
CCA mode(s) using a leave-one-subject-out approach.

RESULTS

Group Effect of Brain Components

We obtained 80 ICs from the multimodal integration analysis
in our study. The modality contributions (for 80 ICs) and
multimodal index of each IC are in Supplement Section 5.
We subsequently used the participant loadings of the 80
ICs to test for group differences and found one component
(IC58) with a significant case-control difference (b = 20.192,
t337 = 23.595, FDR-corrected p = .030) (Figure 1). The
respective contributions of the modalities in IC58 are 26.0%
from VBM, 18.4% from FA, 17.9% from MO, 13.8% from
L1, 13.7% from RA, and 10.2% from MD, indicating that
various MRI features share variance associated with autism.
In Figure 1, we present the summarized images of each
modality’s spatial map of IC58. The spatial patterns show
autism-related smaller GM volume in the bilateral insula,
inferior frontal gyrus, orbitofrontal cortex, precentral and
postcentral gyrus, lateral occipital cortex, inferior temporal
gyrus, angular gyrus, posterior division of cingulate gyrus,
and precuneus cortex and larger GM volume in calcarine
cortex, bilateral middle frontal gyrus, caudate, and anterior
division of cingulate gyrus. Correspondingly, autism-related
DTI features were found in bilateral superior longitudinal
fasciculus (SLF), corticospinal tract (CST), and inferior
fronto-occipital fasciculus (IFOF). In addition to these
fasciculi, RA and MD in the cingulum and anterior thalamic
radiation were also implicated. Taken together, SLF and
their adjacent GM volumes (i.e., involved frontal, precentral,
and postcentral areas [Supplement Section 6]) in autism
indicate that variations of GM volumes and WM micro-
structure are linked in these brain locations, rather than
dependent on modality or tissue.

Post hoc, to assess the respective influences of co-
occurring conditions, diagnosis-by-age, diagnosis-by-sex, or
diagnosis-by-IQ interactions, and medication use on the
multimodal IC found significantly associated with group, we
additionally included them as separate covariates in the GLM
of IC58. The analysis showed that the group effect of IC58 was
robust to the inclusion of these additional covariates in the
model (p , .01). However, we found a significant moderate
site-by-diagnostic group interaction effect on the current result
(G2

2 = 6.860, p = .032). This was driven by having significant
effects in 2 of the 3 sites with no significant differences in the
third. Details are in Supplement Section 7.

Relating Brain Patterns to Behavior Profiles

We conducted the univariate (GLM) and multivariate (CCA)
correlation analyses on brain and behavior data in the autism
group only. No significant univariate brain-behavior relation-
ship in the autism group was found (FDR-corrected
ging November 2023; 8:1084–1093 www.sobp.org/BPCNNI 1087

http://www.sobp.org/BPCNNI


Figure 1. The multimodal component shows significant case-control difference. The relative contribution of each feature is displayed in parentheses. The
voxel-based morphometry (VBM) spatial map is thresholded at 5,|z|,10. Clusters of diffusion tensor imaging features were filled and thresholded at 3,|z|,10,
then smoothed using a 0.3-mm Gaussian kernel in FSL for visualization purposes. FA, fractional anisotropy; L, left; L1, axial diffusivity; MD, mean diffusivity;
MO, mode of anisotropy; R, right; RA, radial diffusivity.
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p . .120). We did, however, find a significant multivariate
association pattern of CCA (r = 0.823, corrected p = .006)
(Figure 2). The proportion of total variance explained by this
multivariate pattern was 20.8% for brain ICs and 14.2% for
behaviors. In this multivariate associated pattern, multimodal
IC7 (canonical loading: 20.334) and IC78 (canonical loading:
0.283) showed strong contributions to the correlation with
autism core symptoms, and from a phenotypic perspective,
this multivariate pattern demonstrated a strong association
with the ADI-R RRB and ADOS-2 RRB subscales. WM
microstructure mainly dominated in IC7 and IC78. IC7 mainly
included right inferior longitudinal fasciculus, IFOF, and CST,
and IC78 primarily involved bilateral anterior thalamic radia-
tion and SLF. These two predominant ICs highlight the
involvement of WM in autism symptoms. The loadings of
each brain component of this CCA mode can be found in
1088 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
Supplement Section 8. The leave-one-subject-out analysis
indicated that the significant CCA mode of CCA analysis
was reliably estimated (Supplement Section 9). We addi-
tionally ran a CCA model excluding SSP to probe the effect
that the imputed SSP scores (42%) specifically may be
having and found the entire structure of the output did not
differ greatly (Supplement Section 10).

The results using nonimputed data of group effect and
univariate brain-behavior association were similar to the main
results. The different CCA patterns using nonimputed data
were reasonable owing to the large amount of missingness
(Supplement Section 3).

DISCUSSION

We examined autism-related interindividual variance of inte-
grated GM-WM morphology in a large European sample of
November 2023; 8:1084–1093 www.sobp.org/BPCNNI
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Figure 2. The multivariate association pattern (i.e., canonical correlation analysis [CCA] mode) was found to be significant between the 2 sets of brain
components and all behavioral profiles. (A) The scatterplot of this correlation (between the CCA variates); x- and y-axes represent the pair of CCA variates. One
dot per each participant is coded with gradient color relating to the restricted repetitive behavior (RRB) subscale of the Autism Diagnostic Interview-Revised
(ADI-R). (B) The loadings of each behavioral (sub)scale in this CCA mode. (C) The modality contributions to the components displayed in panel (D). (D) The 2
multimodal components with a strong contribution to the correlation with autism core symptoms; the top 2 loading modalities in each component are shown.
The canonical loading of each component is shown in parentheses. The modality spatial maps are thresholded at 3,|z|,10. The CCA was performed only in
the autism group. ADOS-2, Autism Diagnostic Observational Schedule, Second Edition; comm., communication; FA, fractional anisotropy; IC, independent
component; L1, axial diffusivity; MD, mean diffusivity; MO, mode of anisotropy; RA, radial diffusivity; RBS-R, Repetitive Behavior Scale-Revised; SA, social
affect; SRS-2, Social Responsiveness Scale, Second Edition; SSP, Short Sensory Profile; VBM, voxel-based morphometry.
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individuals with and without autism across a broad age and IQ
range. Analyses showed a significant diagnostic group effect
of the linked GM-WM pattern that supports our hypothesis of
the link between GM and WM morphology alterations in
autistic individuals. In particular, the GM volume variation in
precentral and postcentral areas converged with the WM
microstructural variation in the SLF. This spotlights the shared
variances between GM and WM morphology in these brain
areas in autism and suggests that the structural associations in
autism are not only limited to localized regions, but also involve
the WM pathways connecting these brain areas. In a next set
of analyses, we found a significant integrative association
Biological Psychiatry: Cognitive Neuroscience and Neuroima
between brain patterns and autism core behaviors using CCA
in the autism group, where the identified brain multimodal
patterns underline the important role of WM morphology.

Notably, the autism-specific VBM pattern on this multi-
modal analysis replicates to a certain extent our previous
unimodal GM volume covariation study in a larger overlapped
sample of the EU-AIMS project (8). The areas of bilateral insula,
inferior frontal gyrus, orbitofrontal cortex, and caudate form a
steady autism-related covariation pattern in previous and
current studies. These areas were demonstrated previously to
relate to repetitive behaviors and reward-based decision-
making abilities in autism (44,45). The covariation of insula and
ging November 2023; 8:1084–1093 www.sobp.org/BPCNNI 1089
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frontal areas in our studies indicates the consistency and
stability of the co-occurring GM morphological alterations in
autism. Benefiting from multimodal/multivariate approaches
suggested by previous studies (46,47), the application of the
LICA approach modeling the shared variances across modal-
ities extends identified autism-related GM associations to
precentral, postcentral, occipital, and temporal areas and
additionally links with significant WM findings of DTI measures.

Our results indicated one covarying set of brain GM and
WM areas associated with autism diagnosis. In this multimodal
set, GM volume in cortical and subcortical regions and
microstructure in WM tracts (mainly SLF, CST, and IFOF) were
implicated, and these regions/tracts have previously been
identified in unimodal analyses (10,44,48–50). This broad range
of brain regions along with large WM bundles associated with
autism is in accord with the notion that the neural correlates of
autism are widespread in brain regions and connectivity pat-
terns (51–53). This also corresponds with another multimodal
autism study reporting extensive autism-related brain areas
(16). The areas of this IC have been linked previously to both
social and nonsocial cognitive difficulties in individuals with
autism, varying from visual, sensory, and motor processing to
high-order cognitive abilities (10,54–57). For example, pre-
central and postcentral gyrus, SLF, and CST are related to
(sensory-)motor processing and have been implicated in
autism (10,50,58). These adjacent affected areas (grouped
areas of precentral and postcentral areas, SLF, and CST;
grouped areas of lateral occipital cortex and IFOF occipital
section) in our findings logically are in line with the brain or-
ganization principles during development, which states that
nearby areas tend to be more interconnected (59,60). In
summary, the autism diagnosis–related covarying GM-WM
pattern reflects that autism is a complex condition associ-
ated with neural morphology. However, we did not find any
significant univariate relationship between behavioral pheno-
types and brain patterns. This is probably a result of the
diverse phenotypes in our sample (i.e., complex and hetero-
geneous nature of autism); therefore, the compound variances
of the symptom profiles cannot be explained by single unim-
odal/multimodal brain patterns. Additionally, imaging studies
suggested that individuals with autism develop alternative
processing strategies (52) that might mix or neutralize the
manifestations of behavioral phenotypes in autism moderating
detection of well-established brain-behavior relationships.
Furthermore, nonsignificant univariate relationships but one
remarkable multivariate brain-behavior relationship in the cur-
rent study may relate to the relatively mild autism traits in the
LEAP cohort; for example, the average total score of ADOS-2
calibrated severity scores is lower than the clinical cutoffs,
which was reported in the larger LEAP sample compared with
other cohorts (20).

The significant multivariate brain-behavior relationship in the
current study is one prominent WM-dominated multivariate
relationship between all brain patterns and all behavioral pro-
files. The top two ranking ICs emphasize the importance of
WM connection to the core traits of autism. Multivariate/
multimodal analysis increases the difficulty in interpreting
findings, as it is challenging to clarify the direction of each
association. Nonetheless, coinciding with previous studies
(2,10,50,61,62), there are associations of inferior longitudinal
1090 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
fasciculus, IFOF, CST, and SLF microstructural measures with
core symptoms/traits in autism. In line with previous findings,
our work also shows laterality effects with much of the
contribution from IC7 being right lateralized in autism (55,63).
Significantly, GM volume contributed only a small amount,
which indicates that WM morphology has a stronger connec-
tion to the autism behavioral phenotypes compared with GM in
this multivariate correlation. In our previous GM work, a
multivariate correlation pattern exhibited a strong association
between RRB scores of ADI-R and ADOS-2 and GM co-
variations in autism, while here, when including WM micro-
structural measures, the brain patterns demonstrated a strong
association with RRB domains of the ADI-R and ADOS-2. This
multivariate brain-behavior association needs further investi-
gation to determine the relationship between the development
of WM microstructure and behaviors, to determine the gener-
alizability beyond the current sample, and to explore how
different behavioral scales capture behavioral phenotypes in
autism, which might expand our knowledge of current brain-
behavior association patterns.

Our findings should be interpreted with regard to several
limitations. First, to generalize our pattern of brain alterations
associated with autism requires replication in other large-
scale datasets. Second, the current multimodal dataset
included fewer participants than our previous work (8), which
may have lowered statistical power when detecting the group
effects and brain-behavior associations in autism group.
Despite that, this is still the largest multimodal MRI study of
autism to date and includes a diverse sample of autistic and
nonautistic participants. Third, limited to the cross-sectional
nature of the current study, our findings are deficient to
address the developmental effects on these brain patterns
and their relations to the behavior profiles, as the structures of
the brain (especially WM) change remarkably over puberty
and with aging.

In this study, we demonstrated autism-related interindi-
vidual covariations of GM volume in frontal, precentral, post-
central, and occipital areas and microstructure in associated
WM fasciculi. Together, these GM and WM alterations are part
of the underlying neural substrates of the phenotypes in
autism. Subsequently, we highlighted the potential role of WM
in relation to the core symptoms of autism. Further studies may
link our GM-WM morphometric findings with brain function
acquired from cognitive assessments and/or functional MRI
data.
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