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The core diagnostic criteria for autism consist of social com-
munication difficulties, unusually restricted and repetitive 
behavior, and sensory difficulties that are present early in 

life and affect social, occupational and other important domains of 
functioning1,2. However, these criteria are broad, leading to substan-
tial heterogeneity. Two individuals with very different phenotypic 
features, co-occurring conditions, support needs or outcomes may 
both be diagnosed as autistic1,3.

Heterogeneity in autism can arise from multiple, partly over-
lapping sources. This includes differences in core diagnostic fea-
tures (core features)1,3,4 and associated features such as IQ, adaptive 
behavior and motor coordination, all of which have an impact on 
life outcomes3,5,6. Furthermore, sex and gender7,8 and co-occurring 
ID and developmental, behavioral and medical conditions9,10 alter 
the presentation and measurement of core autism features. While 
a few studies have attempted to investigate the genetic influences 
on this heterogeneity11–18, substantial gaps remain. First, existing 
studies investigating genotype–phenotype associations have been 

limited to summed scores of core autism features in smaller sample 
sizes19–21 rather than the underlying latent dimensions. This dis-
tinction is important given that autism is phenotypically dissocia-
ble12,22,23, and some associations may emerge only when latent traits 
are considered. Second, while the impact of de novo genetic variants 
on co-occurring developmental disabilities is reasonably well char-
acterized17,20,21, the impact of common genetic variants is unknown. 
Third, although sex differences in autism vary by the presence of 
ID17,24,25, the sex-differential impact of common genetic variants in 
autistic individuals with and without ID is unknown. Finally, the 
impact of latent core autism phenotypes, sex and de novo variants 
on the common variant heritability also warrants investigation with 
large sample sizes.

Here, we address these four questions by combining genetic and 
phenotypic data from up to 12,893 autistic individuals from four 
different datasets. We focus on de novo protein-truncating and 
missense variants in constrained genes (high-impact de novo vari-
ants)17,26 and PGS for autism and genetically correlated phenotypes16. 
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The substantial phenotypic heterogeneity in autism limits our understanding of its genetic etiology. To address this gap, here 
we investigated genetic differences between autistic individuals (nmax = 12,893) based on core and associated features of 
autism, co-occurring developmental disabilities and sex. We conducted a comprehensive factor analysis of core autism features 
in autistic individuals and identified six factors. Common genetic variants were associated with the core factors, but de novo 
variants were not. We found that higher autism polygenic scores (PGS) were associated with lower likelihood of co-occurring 
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Finally, this larger sample size alongside more detailed information 
on genes underlying severe developmental disorders27 also allows 
us to revisit and provide deeper insights into two additional impor-
tant issues relevant to heterogeneity in autism: the association of 
high-impact de novo variants with (1) co-occurring developmental 
disabilities and (2) sex.

Results
Identifying latent phenotypes in core autism features. A criti-
cal challenge in identifying sources of heterogeneity in autism is 
understanding the latent structure of core autism phenotypes. To 
this end, we combined two widely used parent-reported measures 
of autistic traits (Repetitive Behavior Scale—Revised (RBS)28 and 
Social Communication Questionnaire—Lifetime version (SCQ)29) 
for 24,420 autistic individuals from the Simons Simplex Collection 
(SSC)30 and the Simons Foundation Powering Autism Research for 
Knowledge (SPARK)31 cohorts.

In exploratory factor analyses (Methods), we tested 42 different 
factor models, including bifactor models (Supplementary Table 1 
and Supplementary Fig. 1). We identified a correlated six-factor 
model with good theoretical interpretation (Supplementary Fig. 2),  
and confirmatory factor analyses identified fair fit indices (con-
firmatory fit indices, 0.92–0.94; Tucker–Lewis indices (TLI), 
0.92–0.94; root mean square errors, 0.056–0.060). Fit indices 
increased modestly when including orthogonal method factors in 
the model (Supplementary Table 1). The explained common vari-
ances and hierarchical Ω values for the bifactor models were low 
(<0.8), suggesting that general factors may not explain the data well 
(Supplementary Table 2). The six identified factors are (1) insistence 
on sameness (F1), (2) social interaction at the age of five years (F2), 
(3) sensory–motor behavior (F3), (4) self-injurious behavior (F4), 
(5) idiosyncratic repetitive speech and behavior (F5) and (6) com-
munication skills (F6) (Supplementary Table 3). These broadly cor-
respond to four restricted, repetitive and sensory behavior factors, 
that is, non-social factors (insistence of sameness, sensory–motor 
behavior, self-injurious behavior and idiosyncratic repetitive speech 
and behavior) and two social factors (social interaction and com-
munication skills).

All interfactor correlations were significant and moderate to high 
in magnitude, with higher correlation among non-social and social 
factors than between social and non-social factors (Fig. 1a). Sex dif-
ferences were minimal (Cohen’s d < 0.1; Fig. 1b and Supplementary 
Table 4a). All factors were negatively correlated with full-scale IQ 
(Fig. 1c, Supplementary Fig. 3 and Supplementary Table 4b). In 
this cross-sectional data, older participants had lower factor scores 
(that is, fewer difficulties), with the exception of ‘social interaction’ 
(Fig. 1d), in line with previous research32. Alternatively, this could 
reflect diagnostic bias. However, of the 21 items in the ‘social inter-
action’ factor, 19 specifically ask about behavior between the ages 4 
and 5 years (Methods), and this trajectory likely reflects recall bias, 
as caregivers are likely to report more severe behaviors retrospec-
tively33. Similar trends were observed in both males and females 
(Supplementary Fig. 4). Of the six factors and RBS and SCQ, 
only insistence on sameness (F1) and self-injurious behavior (F4) 
had significant SNP heritability (Supplementary Table 5). There 
were moderate to high genetic correlations among the six factors 
(Supplementary Table 6).

Common genetic variants are associated with core autism fea-
tures. We next conducted association analyses between 19 different 
core and associated features and different classes of genetic vari-
ants (Methods). We first investigated the association between the 
19 features and PGS for autism (iPSYCH autism data freeze), intel-
ligence34, educational attainment35, attention-deficit–hyperactivity 
disorder (ADHD)36 and schizophrenia37 and, as a negative control, 
hair color38 (n = 2,421–12,893, Supplementary Table 7). In multiple 

regression analyses, ADHD PGS were associated with increased 
non-social core autism features (total scores on the RBS, insistence 
on sameness, sensory–motor behavior and self-injurious factor 
scores) (Fig. 2 and Supplementary Table 8). Intelligence PGS were 
associated with increased full-scale and nonverbal IQ. Educational 
attainment PGS were associated with increased full-scale and ver-
bal IQ and reduced scores on core autism features. Schizophrenia 
PGS were associated with reduced adaptive behavior, measured 
using the composite score of the Vineland Adaptive Behavior Scales. 
Moderate heterogeneity (I2 > 50%) was observed only for 10% of 
the associations. The majority of the significant associations (12 of 
15) had concordant effect directions in all cohorts (Supplementary  
Fig. 5). We did not identify any significant genotype–phenotype 
association using hair color (blonde versus other) as a negative con-
trol (Supplementary Table 8).

In line with previous results17,20,21, the number of high-impact 
de novo variants (protein-truncating single-nucleotide variants 
(SNVs) and structural variants and missense variants with missense 
badness, PolyPhen-2 and constraint (MPC) score >2, n = 2,863–
4,442) was associated with reduced measures of IQ, adaptive behav-
ior and motor coordination but not core autism features (Fig. 2 and 
Supplementary Table 9). The effect sizes of the PGS were not attenu-
ated after controlling for the presence of high-impact de novo vari-
ants (Supplementary Table 9), which was true even for full-scale IQ.

In autistic individuals, full-scale IQ decreased with increasing 
number of high-impact de novo variants but increased with increas-
ing PGS for intelligence (Fig. 3a). No strong evidence of interaction 
between PGS for intelligence and high-impact de novo variants was 
observed, suggesting their additive effects on full-scale IQ. Among 
the significant genotype–phenotype associations, accounting for 
full-scale IQ did not attenuate the effects of PGS on core autism fea-
tures (Fig. 3b and Supplementary Table 10), which was supported 
by minimal and statistically non-significant genetic correlations 
between full-scale IQ and the core autism features (Supplementary 
Table 6). By contrast, associations between high-impact de novo 
variants and associated autism features were attenuated, partly 
because of the moderate phenotypic correlations between these fea-
tures and full-scale IQ (Fig. 4c).

Core autism phenotypes in high-impact de novo carriers. While 
high-impact variants in some autism-associated genes lead to core 
autistic features, notably in animal models (for example, refs. 39,40), 
as a group, they were not robustly associated with core autism fea-
tures in this study (Fig. 2). It is unclear whether the latent structure 
of core phenotypes differs in autistic individuals with high-impact 
de novo variants (henceforth, carriers) compared to autistic indi-
viduals without any known high-impact de novo variant (hence-
forth, non-carriers). We thus investigated differences in the latent 
structure of core autism phenotypes between carriers (n = 325) and 
non-carriers (n = 2,727). Although likelihood-ratio tests identi-
fied significant configural invariance violation (that is, the factor 
structure dissimilar across groups, P < 2 × 10−16), this was due to the 
relatively large sample size: the fit indices and visual inspections 
of the latent structure suggested that the differences were minimal 
(Supplementary Table 11).

Given this, we first investigated whether autistic carriers had 
higher PGS for autism than non-carriers, which may account for 
core autism features in carriers (additivity). As demonstrated previ-
ously but with a different set of PGS19, autistic carriers had lower 
PGS for autism than autistic non-carriers (βPGS = −0.16, s.e. = 0.045, 
P = 3.67 × 10−4, linear regression; Fig. 4a). This difference was not 
observed for PGS for educational attainment, IQ or schizophrenia 
(Supplementary Table 12). However, while autistic non-carriers 
had higher PGS than non-autistic siblings (βPGS = 0.19, s.e. = 0.023, 
P = 2.68 × 10−15, logistic regression), autistic carriers (n = 579) were 
indistinguishable from non-autistic siblings (n = 3,681) based on 
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autism PGS (βPGS = 0.028, s.e. = 0.045, P = 0.53, logistic regression; 
Supplementary Fig. 6).

The PGS in a trio with an affected child can be summarized 
as the parental mean PGS (henceforth, midparental PGS) and the 
deviation of the affected child’s PGS from the midparental PGS. 
As previously reported14, with this expanded sample size, we iden-
tified an overtransmission of autism PGS to autistic individuals 
(mean = 0.17, s.e. = 0.01, n = 6,981, P < 2 × 10−16) and, curiously, a 
modest undertransmission to unaffected siblings (mean = −0.03, 
s.e. = 0.02, n = 3,832, P = 0.034) (Fig. 4b and Supplementary Table 
13). This likely reflects both reproductive stoppage41 and underdiag-
nosis of autism in the parental generation42. Carriers had a modest 
overtransmission of autism PGS (mean = 0.08, s.e. = 0.04, n = 579, 

P = 0.02), while this was substantially higher in non-carriers 
(mean = 0.18, s.e. 0.01, n = 4,997, P < 2 × 10−16). Notably, while car-
riers had significantly lower overtransmission than non-carriers 
(P = 0.02), they had a significantly higher overtransmission than 
siblings (PGS; P = 9.1 × 10−3), providing additional support for addi-
tivity of common and rare genetic variants.

A second hypothesis is that the effect of high-impact de novo 
variants on core autism features is partly mediated by associated 
autism features, given the modest negative correlation between 
them (Fig. 4c). Given that high-impact de novo variants are associ-
ated with a relatively sizeable reduction in both full-scale IQ and 
motor coordination, we reasoned that there would be a knock-on 
effect on core autism features. The fact that we did not observe a 
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Fig. 2 | Association of PGS and high-impact de novo variants with core and associated autism features. Results from linear regression analyses testing 
the associations between the core and associated autism features and PGS for autism, ADHD, schizophrenia, educational attainment and intelligence, 
and with high-impact de novo variants (n = 2,421–12,893). For all association plots, standardized regression coefficients from linear regressions (central 
point) and 95% confidence intervals are provided. Yellow indicates significant association after Benjamini–Yekutieli correction for multiple comparisons 
(corrected P < 0.05). Red text indicates associated features, where higher values correspond to greater ability. Phenotypes are Autism Diagnostic 
Observation Schedule social affect (ADOS SA) and restricted and repetitive behavior (ADOS RRB); Autism Diagnostic Interview-Revised verbal 
communication (ADI VC), social interaction (ADI SOC) and restricted and repetitive behavior (ADI RRB); insistence of sameness factor (F1); social 
interaction factor (F2); sensory–motor behavior factor (F3); self-injurious behavior factor (F4); idiosyncratic repetitive speech and behavior factor (F5); 
communication skills factor (F6); adaptive behavior assessed by the Vineland Adaptive Behavior Scales (VABS); motor coordination assessed by the 
Development Coordination Disorder Questionnaire (DCDQ); score on the Social Responsiveness Scale (SRS); full-scale IQ (FSIQ); nonverbal IQ (NVIQ); 
and verbal IQ (VIQ).
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significant association between high-impact de novo variants and 
core autism features (Fig. 2b) may be due to attenuated correla-
tions between core and associated features in carriers compared 
to non-carriers21. However, tests of matrix correlation equivalence 
suggested no differences in the phenotypic correlation structures of 
carriers and non-carriers (P = 9.25 × 10−4, Jennrich test for matrix 
equivalency). This was supported by the finding of no differences in 
pairwise Pearson’s correlation coefficients between each of the three 
associated features and the six factors, SCQ and RBS between carri-
ers and non-carriers (Fisher’s Z-test, all P > 0.05).

One alternate explanation is that we are underpowered to 
observe this effect. We used simulations to investigate whether we 
had sufficient statistical power to identify associations between 
high-impact de novo variants and core autism features. Assuming 
that all effects are completely mediated by only one of the three 
associated features (full-scale IQ, adaptive behavior or motor coor-
dination), power calculations indicate that we had less than 80% 
power for all core autism features tested (Fig. 4d). Larger samples 
may identify significant effects between high-impact de novo vari-
ants and core autism features, but it will be important to investigate 
whether the associations are mediated by associated autism features. 
However, neither of these two hypotheses excludes the possibility 
that different classes of de novo variants (for example, missense 
versus protein-truncating, de novo variants in specific functional 
categories) may be associated with core autism features.

Autism PGS and co-occurring developmental disabilities. 
Multiple co-occurring developmental disabilities are another source 
of heterogeneity among autistic individuals. While co-occurring 
developmental disabilities are associated with high-impact de novo 
variants15,17,20, it is unclear whether they are impacted by PGS for 

autism. In the SPARK study, in line with previous research15,17,20, 
carriers of high-impact de novo variants had increased counts of 
co-occurring developmental disabilities (βde novo = 0.31, s.e. = 0.05, 
P = 1.55 × 10−8, n = 3,089; quasi-Poisson regression). By contrast, 
higher PGS for autism was associated with reduced count of 
co-occurring developmental disabilities (βPGS = −0.037, s.e. = 0.009, 
P = 3.91 × 10−5, n = 13,435, quasi-Poisson regression), even after 
accounting for the other three PGS (Fig. 5a and Supplementary Table 
14a). Leave-one-out analyses indicated that the results were not 
driven by any one developmental disability (Supplementary Fig. 7). 
Notably, autistic individuals with five or more co-occurring devel-
opmental disabilities did not have statistically higher autism PGS 
than non-autistic siblings (Fig. 5a and Supplementary Table 14b).  
By contrast, even when restricting to autistic individuals with 
no co-occurring developmental disabilities, individuals with a 
high-impact de novo variant were more likely to be autistic than 
non-autistic siblings (Fig. 5a and Supplementary Table 14b).

The apparent negative association between autism PGS and 
co-occurring developmental disabilities has not, to our knowl-
edge, been reported earlier. This can reflect both a true negative 
association (for example, PGS for autism increase IQ in both the 
general population16,43 and in autistic individuals as seen in Fig. 2a) 
and the negative correlation between high-impact de novo vari-
ants and autism PGS. To better delineate this, we investigated the 
association between the two classes of genetic variants and two 
well-characterized developmental phenotypes: age of walking inde-
pendently and age of first words. In autistic individuals, autism 
PGS were associated with earlier age of walking (βPGS = −0.012, 
s.e. = 0.003, P = 3.2 × 10−5, negative binomial regression) and ear-
lier age of first words (βPGS = −0.0125, s.e.= 0.005, P = 0.01, negative 
binomial regression), while high-impact de novo variants increased 
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the age for both phenotypes (Fig. 5b and Supplementary Table 15b). 
The association between autism PGS and age of walking but not 
age of first words remained statistically significant after accounting 
for high-impact de novo variants and full-scale IQ (Supplementary 
Table 15a). Similarly, the association between high-impact de novo 
variants and age of walking but not age of first words remained 
significant after accounting for full-scale IQ (Supplementary  
Table 15a). However, autism PGS were not significantly asso-
ciated with either age of walking or age of first words in siblings 
(Supplementary Table 15a). Despite the negative association 
between autism PGS and the two phenotypes, even autistic indi-
viduals in the highest decile of autism PGS had higher mean age 
of walking and age of first words than siblings, as did autistic 

non-carriers (Fig. 5b) and autistic individuals with no co-occurring 
developmental disability, suggesting other sources of variation in 
these phenotypes (Supplementary Table 15b).

There is likely heterogeneity even within the broad class of 
constrained genes, with differential impact on autism vis-à-vis 
co-occurring developmental disabilities. Previous research has 
attempted to disentangle this heterogeneity by comparing counts of 
disrupting de novo variants in autism versus those in severe develop-
mental disorders (genetically undiagnosed developmental disorders 
with accompanying ID and/or developmental delays)17. The lack 
of detailed phenotypic information in the cohorts assessed renders 
the previous research difficult to interpret44. Here we take a differ-
ent approach to revisit this question. Using the more detailed data 

–0.5

0

1  2  3 4  5  6  7  8  9  10

PGS decile

a

0

0.1

0.2

All p
ro

ba
nd

s

n 
= 

6,
98

1
Sibl

ing
s

n 
= 

3,
54

4
Car

rie
rs

n 
= 

57
9

Non
–c

ar
rie

rs

n 
= 

4,
99

7

M
ea

n 
P

G
S

 d
ev

ia
tio

n

b

c d

1 0.31

1

0.42

0.62

1

–0.28

–0.25

–0.51

1

–0.26

–0.32

–0.42

0.61

1

–0.24

–0.15

–0.26

0.28

0.25

1

–0.26

–0.26

–0.26

0.33

0.46

0.45

1

–0.24

–0.12

–0.21

0.29

0.21

0.57

0.61

1

–0.33

–0.23

–0.28

0.32

0.4

0.65

0.74

0.74

1

DCDQ
FSIQ

VABS F2 F6 F4 F5 F1 F3

–1.0 –0.5 0 0.5 1.0

Pearson
correlation

0

–0.1 –0.2 –0.3 –0.4 –0.5

0.25

0.50

0.75

1.00

Correlation

P
ow

er

Category DCDQ FSIQ VABS

β 
co

ef
fic

ei
nt

 (
lo

gi
st

ic
)

Motor coordination
(DCDQ)

FSIQ

Adaptive behavior
(VABS)

Social interaction
(F2)

Communication
skills (F6)

Self-injurious
behavior (F4)

Idiosyncratic
speech (F5)

Insistence on
sameness (F1)

Sensory–motor
behavior (F3)

r = –0.32 (FSIQ, F6)

r = –0.33 (DCDQ, F3)

r = –0.51
(VABS, F2)

P < 2 × 10–16
P < 2 × 10–16

P = 0.04
P = 0.02

P = 7 × 10–3

Fig. 4 | Additivity and impact of high-impact de novo variants on core autism features. a, β coefficients (βde novo) and 95% confidence intervals for carrying 
a high-impact de novo variant per decile of autism PGS in autistic individuals after accounting for sex, age, ten genetic principal components and PGS 
for educational attainment, intelligence and schizophrenia, calculated using logistic regression (n = 5,575). b, Overtransmission (central point) and 95% 
confidence errors of PGS for autism in all probands, siblings, carriers of high-impact de novo variants and non-carriers. P values are provided above for the 
overtransmission. We also compare differences in overtransmission between carriers and non-carriers and carriers and siblings and provide the P values 
for this from two-tailed Z-tests. c, Phenotypic correlation between the core features and associated autism features. d, Statistical power for identifying a 
significant association between the number of high-impact de novo variants and core features based on the correlation with the three associated features, 
which is provided in c. The highest correlation between a core feature and an associated feature is indicated on the power graph. Shaded regions indicate 
95% confidence intervals of the power curve.

NATURE GENETICS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNature GeNetics

on co-occurring developmental disabilities in the SPARK study, we 
investigated whether constrained genes robustly associated with 
severe developmental disorders (DD genes)27 have differential effects 
on co-occurring developmental disabilities in autistic individuals 
compared to other constrained genes (non-DD genes). We use the 
term ‘non-DD genes’ for convenience as this list is also likely to con-
tain genes associated with severe developmental disorders that may 
be discoverable at larger sample sizes but are likely less penetrant 
(that is, lower effect size) or lead to increased prenatal or perinatal 
death (that is, rarer) compared to variants in the DD genes27.

In the SPARK cohort, 35.6% of the carriers had high-impact 
de novo variants in DD genes. Autistic individuals were more likely 
to be carriers of either set of genes than non-autistic siblings, which 
was observed even when restricting to autistic individuals with-
out any known co-occurring developmental disability (Fig. 5c and 
Supplementary Table 14c,d). However, while the risk for the count 
of co-occurring developmental disabilities was elevated in carriers 
of DD genes (βde novo = 0.54, s.e. = 0.08, P = 6.48 × 10−12; quasi-Poisson 
regression), this was much more modest for carriers of non-DD 
genes (βde novo = 0.15, s.e. = 0.07, P = 0.035; quasi-Poisson regression). 
Supporting this, autistic carriers of high-impact de novo variants in 

DD genes started walking independently and using words ~3 months 
later than autistic carriers of high-impact de novo variants in non-DD 
genes (P < 0.05 in both; Fig. 5b and Supplementary Table 15b).  
These results support a broad phenotypic distinction between the 
two sets of genes. We ran sensitivity analyses using a larger but 
overlapping list of genes identified from a highly curated database, 
Developmental Disorder Gene-to-Phenotype45, and identified con-
sistent results (Supplementary Tables 14 and 15).

Sex differences in common and high-impact de novo variants. 
We next turned to another potential source of heterogeneity: sex. 
Autistic females are more likely to have high-impact de novo variants 
than autistic males17,26,46,47, which is thought to support the ‘female 
protective effect’ in autism13,46. However, a similar effect is observed 
in severe developmental disorders more generally and is entirely 
explained by a relatively small number of genes significantly associ-
ated with severe developmental disorders (that is, DD genes)48. We 
thus revisited sex differences in high-impact de novo variants using 
data from the SPARK and SSC studies (Supplementary Table 16), 
restricting our analyses to autosomal genes. Across all high-impact 
de novo variants, autistic females were more likely to be carriers than 
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males (Relative risk (RR) = 1.52; 95% confidence interval, 1.27–
1.81). However, this was explained entirely by high-impact de novo 
variants in DD genes (DD genes, RR = 2.53, 95% confidence inter-
val = 1.91–3.35; non-DD genes, RR = 1.14, 95% confidence inter-
val = 0.89–1.46) (Fig. 6a). This sex difference in DD genes remained 
and was not attenuated after accounting for the total number of 
co-occurring developmental disabilities in the SPARK cohort 
(unconditional estimates, βde novo = 0.83, s.e.= 0.21, P = 8.15 × 10−5; 
conditional estimates, βde novo = 0.82, s.e. = 0.22, P = 3.53 × 10−4; 
logistic regression) and after accounting for full-scale IQ and motor 
coordination scores in the SSC and SPARK cohorts (unconditional 
estimates, βde novo = 1.10, s.e. = 0.15, P = 3.42 × 10−13; conditional esti-
mates, βde novo = 1.31, s.e. = 0.20, P = 8.19 × 10−11; logistic regression). 
We did not observe sex differences for either gene set in siblings 
(P > 0.05). These results suggest that sex differences in high-impact 
de novo variants are driven by a relatively small set of highly con-
strained genes that also increase the likelihood of co-occurring 
developmental disabilities in autism.

Both the contribution of PGS (Fig. 5a) and the male:female ratio 
are higher in autistic individuals without ID than in those with ID, 
suggesting that polygenic likelihood for autism may differ between 
sexes at IQ scores of 70 or above. Recent studies have found higher 
PGS for autism in females than in males19 and greater overtransmis-
sion of PGS for autism in female non-carriers than in male carri-
ers49, yet neither have stratified by ID. We conducted sex-stratified 
polygenic transmission disequilibrium tests (pTDT) to investi-
gate this (nmax = 6,981 autistic trios). While PGS for autism were  

overtransmitted in both male and female probands, this overtrans-
mission did not differ by sex (Fig. 6 and Supplementary Table 17). 
However, in autistic individuals without ID (IQ > 70), females had 
~75% higher overtransmission of autism PGS than males (P = 0.02, 
two-tailed Z-test; Fig. 6b), which was observed even when using 
the sex-stratified autism genome-wide association study (GWAS) 
(Supplementary Table 17). When additionally removing individu-
als with borderline intellectual functioning (IQ < 90), females had 
double the overtransmission of autism PGS compared to males 
(females, mean = 0.34, s.e. = 0.06, n = 276; males, mean = 0.17, 
s.e. = 0.03, n = 1,328; difference, P = 0.01, two-tailed Z-test). We did 
not find any sex difference in overtransmission for autistic individu-
als with ID or autistic carriers of a high-impact de novo variant or 
non-autistic siblings. This sex difference in overtransmission was 
not observed for PGS for educational attainment and intelligence, 
suggesting that the results are not due to differences in IQ scores 
between sexes. Furthermore, there was no difference in midpa-
rental PGS scores, family income or parent education by sex or ID 
(P > 0.05 for all comparisons), factors correlated with participa-
tion in research50. This suggests that these results are unlikely to be 
explained by sex differences in participation. We cannot, however, 
distinguish the female protective effect due to common or rare vari-
ants from diagnostic bias in the current study24,51.

Sex and ID impact SNP heritability. Finally, we investigated 
the impact of this heterogeneity on SNP heritability calculated  
using GREML52,53 and phenotype correlation–genotype correlation 
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(PCGC)54 with individuals from the ABCD cohort as population 
controls (Methods). All heritability estimates are reported on the 
liability scale (Fig. 7a and Supplementary Table 18).

We identified a modest SNP heritability for autism (GCTA, 
h2

SNP = 0.29, s.e. = 0.02; PCGC, h2
SNP = 0.29, s.e. = 0.03), which is 

higher than estimates from iPSYCH16 but lower than estimates 
from the AGRE55 and PAGES56 cohorts. Autistic individuals with 
ID had lower SNP heritability than autistic individuals without ID 

(P = 1.6 × 10−3, two-tailed Z-test). SNP heritability for autism in 
autistic carriers compared to general population controls (agnostic 
of carrier status) was modest (GCTA, h2

SNP = 0.20, s.e.= 0.05; PCGC, 
h2

SNP = 0.14, s.e = 0.08), which is similar to the SNP heritability 
observed for autistic individuals with ID. However, when compar-
ing autistic high-impact de novo carriers with autistic non-carriers, 
the SNP heritability was not statistically significant (GCTA, 
h2

SNP = 0.14, s.e. = 0.14; PCGC, h2
SNP = 0.15, s.e. = 0.19), suggesting  
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that the observed SNP heritability for autistic carriers reflects 
autism rather than factors associated with the generation of germ-
line mutations57,58. This result is in line with our pTDT analyses, 
which identify an overtransmission of PGS in carriers, and previous 
research that has identified a smaller yet significant heritability for 
severe developmental disorders59.

Stratifying by sex had the largest effect on SNP heritability 
(Fig. 7b). Males had approximately 70% higher SNP heritabil-
ity than females (P = 9.3 × 10−3, two-tailed Z-test). This difference 
was observed across a range of prevalence estimates (Fig. 7c and 
Supplementary Table 19) after downsampling the number of autis-
tic males to match the number of autistic females (Supplementary 
Table 18) and varying the male:female ratio to 3.3:1 to account for 
diagnostic bias51 (Supplementary Table 18). By contrast, stratify-
ing individuals by high scores (1 s.d. above the mean) on the core 
autism phenotypes or a combination of two core autism phenotypes 
modestly reduced or did not alter the SNP heritability for autism 
(Fig. 7a and Supplementary Table 18).

Discussion
Individual differences among autistic individuals in core and 
associated features are complex and genetically multifactorial. 
High-impact de novo variants and PGS have differential and often 
independent effects on these features. There is additivity between 
common and high-impact de novo variants in autism. These rep-
resent the most widely studied class of genetic variants in autism 
thus far, yet emerging evidence suggests a role for other classes (for 
example, rare inherited and de novo tandem repeats) of genetic 
variants as well17,19,60,61. However, this negative correlation between 
high-impact de novo variants and autism PGS may not extend to 
the general population. Because we have focused only on autistic 
individuals and not the general population, we may have induced 
a negative correlation between them because people have to have 
either a high PGS or high-impact de novo variants to cross the diag-
nostic threshold.

The two classes of genetic variants do not have the same 
effects on either the core or associated autism phenotypes nor on 
co-occurring developmental disabilities. The negative association 
between autism PGS and co-occurring developmental disabilities 
reflects both a true negative association (for example, for IQ43) and 
the additivity between rare and common variants.

We observe sizeable differences in both common and 
high-impact de novo variants based on sex and ID. While these 
results may be interpreted as providing support for the female pro-
tective effect13,46, this interpretation is not straightforward. First, the 
increased likelihood of being a carrier of high-impact de novo vari-
ants was observed only with genes associated with severe develop-
mental disorders, not for other constrained genes, despite both sets 
of genes increasing the likelihood for autism. This suggests that the 
female protective effect may be for severe developmental disorders 
rather than for autism specifically, which warrants further investi-
gation. Second, the higher overtransmission of autism PGS must 
be interpreted alongside the reduced SNP heritability of autism 
in females. Assuming high genetic correlation between males and 
females, reduced SNP heritability in females suggests that higher 
PGS are required to reach the equivalent levels of genetic likeli-
hood in males62. Yet this raises another important question: why 
do autistic females have lower SNP heritability than autistic males? 
Does this reflect ascertainment bias in the GWAS cohorts, diagnos-
tic bias, diagnostic overshadowing, camouflaging or masking and/
or social stigma7,24,51? Several social factors can influence diagnosis 
in a sex-differential manner, and investigating this is paramount to 
understanding sex-differential genetic effects.

In conclusion, our findings have important implications for using 
genetics to understand autism. We need deeper phenotyping at scale 
and need to account for the evolving diagnostic criteria for autism63.
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Methods
Participants. For factor analyses, we restricted our analyses to autistic individuals 
from the SSC and SPARK cohorts. Participants had to have completed the two 
phenotypic measures (details are below) to be included in the factor analyses. 
We also excluded autistic individuals with incomplete entries in either of the two 
measures (n = 5,754 only in the SPARK cohort). This resulted in 1,803 participants 
(n = 1,554 males) in the SSC, 14,346 participants (n = 11,440 males) in SPARK 
version 3 and 8,271 participants (n = 6,262 males) in extra entries from SPARK 
version 5 (SSC, mean age = 108.75 months, s.d. = 43.29 months; SPARK version 3,  
mean age = 112.11 months, s.d. = 46.43 months; SPARK version 5, mean 
age = 111.22 months, s.d. = 48.19 months). Only the SCQ was available for siblings 
in the SPARK study.

We conducted analyses using data from four cohorts of autistic individuals: the 
SSC (n = 8,813)30, the Autism Genetic Resource Exchange (AGRE, CHOP sample) 
(nmax = 1,200)64, the AIMS-2-TRIALS Longitudinal European Autism Project 
(LEAP) sample (nmax = 262)65 and SPARK (n = 29,782)31. For sibling comparisons, 
we included siblings from the SSC (n = 1,829) and SPARK (n = 12,260) cohorts. 
For trio-based analyses, we restricted to complete trios in the SSC (n = 2,234) and 
SPARK (n = 4,747) cohorts. For all analyses, we restricted the sample to autistic 
individuals who passed genetic quality control (QC) and who had phenotypic 
information.

Factor analyses. Phenotypes. We conducted factor analyses using the SCQ29 and 
the RBS28. The SCQ is a widely used caregiver report of autistic traits capturing 
primarily social communication difficulties and, to a lesser extent, repetitive and 
restricted behaviors29. There are 40 binary (yes-or-no) questions in total, with 
the first question focusing on the individual’s ability to use phrases or sentences 
(total score, 0–39). We used the Lifetime version rather than the current version 
as this was available in both the SPARK and SSC studies. Of note, in the Lifetime 
version, questions 1–19 are about behavior over the lifetime, while questions 
20–40 refer to behavior between the ages of 4 to 5 years or in the last 12 months if 
the participant is younger. We excluded participants who could not communicate 
using phrases or sentences (n = 217 in the SSC and n = 17,092 in SPARK) as other 
questions in the SCQ were not applicable to this group of participants. The RBS is 
a caregiver-reported measure of presence and severity of repetitive behaviors over 
the last 12 months. It consists of 43 questions assessed on a four-point Likert scale 
(total score, 0–129). Higher scores on both measures indicate greater autistic traits.

Exploratory factor analyses. We conducted exploratory factor analysis on a random 
half of the SSC (n = 901 individuals, of which 782 were males) using ‘promax’ 
rotation to identify correlated factors as implemented by ‘psych’ (ref. 66) in R. We 
conducted three sets of exploratory correlated factor analyses: for all items, for 
social items and for non-social items. Previous studies have provided support for 
a broad dissociation between social and non-social autism features12,23 and have 
conducted separate factor analyses of social (for example, refs. 67,68) and non-social 
autism features (for example, refs. 69,70). Thus, we reasoned that separating items 
into social and non-social categories might aid the identification of covariance 
structures that may not be apparent when analyzing all items together. We divided 
the data into social (all of the SCQ except item 1 and nine other items and item 
28 from the RBS) and non-social (nine items from the SCQ (items 8, 11, 12 and 
14–18) and all items from RBS except item 28) items, which was carried out after 
discussion between V.W. and X.Z. The ideal number of factors to be extracted was 
identified from examining the scree plot (Supplementary Fig. 2), parallel analyses 
and theoretical interpretability of the extracted factors. However, we examined all 
potential models using confirmatory factor analyses as well to obtain fit indices, 
and the final model was identified using both exploratory and confirmatory  
factor analyses.

We then applied the model configurations from ‘promax’ rotated exploratory 
factor analysis for bifactor models to explore the existence of general factor(s). In 
addition to a single general factor bifactor model, we divided the data into social 
and non-social items as mentioned earlier and applied bifactor models separately 
for the social and non-social items. Hierarchical Ω values and explained common 
variances were then calculated for potential models as extra indicators of the 
feasibility of bifactor models, but hierarchical Ω values were not greater than 0.8 
for most of the models tested, and explained common variances were not greater 
than 0.7 (refs. 71–73) for any of the models tested (Supplementary Table 2).

Confirmatory factor analyses. Three rounds of confirmatory factor analyses 
were conducted: first for the second half of the SSC, followed by analysis of 
SPARK participants whose phenotypic data were available in version 3 of the 
data release and, finally, analysis of SPARK participants whose phenotypic data 
were available only in version 4 or version 5 of the data release and not in the 
earlier releases. To evaluate the models, multiple widely adopted fit indices were 
considered, including the comparative fit index (CFI), the TLI and the root mean 
square error of approximation. In CFA, items were assigned only to the factor 
with the highest loading to attain parsimony. We conducted three broad sets of 
confirmatory factor analyses: (1) confirmatory factor analyses of all correlated 
factor models, (2) confirmatory factor analyses of the autism bifactor model and 
(3) confirmatory factor analyses of social and non-social bifactor models. For 

each of these confirmatory factor models, we limited the number of factors tested 
based on the slope of the scree plots and based on the number of items loading 
onto the factor (five or more). For the confirmatory factor analyses of social and 
non-social bifactor models, we iteratively combined various numbers of social 
and non-social group factors. In bifactor models, items without loading onto the 
general factor in the correspondent EFA were excluded. Items were allocated to 
different group factors, which were identified based on the highest loading (items 
with loading <0.3 were excluded). Due to the ordinal nature of the data, all CFAs 
were conducted using the diagonally weighted least-squares estimator (to  
account for the ordinal nature of the data) in the R package lavaan 0.6-5 (ref. 74).  
We identified the model most appropriate for the data at hand with TLI and 
CFI > 0.9 (TLI and CFI > 0.95 for bifactor models), low root mean square error of 
approximation and good theoretical interpretability based on discussions between 
V.W. and X.Z. Additionally, as sensitivity analyses, the identified model (correlated 
six-factor model) was run again with two orthogonal method factors mapping onto 
SCQ and RBS-R to investigate if the fit indices remained high after accounting for 
covariance between items derived from the same measure, as these measures vary 
subtly during the period of time evaluated. We also reanalyzed the identified  
model after removing items that were loaded onto multiple factors (>0.3 on  
two or more factors) to provide clearer theoretical interpretation of the model. 
For genetic analyses, we used factor scores from the correlated six-factor model 
without including the orthogonal method factors and without dropping the 
multi-loaded items.

Genetic analyses. Genetic quality control. QC was conducted for each cohort 
separately by array. We excluded participants with genotyping rate <95%, 
excessive heterozygosity (±3 s.d. from the mean), non-European ancestry as 
detailed below, mismatched genetic and reported sex and, for families, those 
with Mendelian errors >10%. SNPs with genotyping rate <10% were excluded, 
or they were excluded if they deviated from Hardy–Weinberg equilibrium 
(P < 1 × 10−6). Given the ancestral diversity in the SPARK cohort, Hardy–
Weinberg equilibrium and heterozygosity were calculated in each genetically 
homogeneous population separately. Genetically homogeneous populations 
(corresponding to five super-populations: African, East Asian, South Asian, 
admixed American and European) were identified using the five genetic principal 
components calculated using SPARK and 1000 Genomes Phase 3 populations75 
and clustered using UMAP76. Principal components were calculated using linkage 
disequilibrium-pruned SNPs (r2 = 0.1, window size = 1,000 kb, step size = 500 
variants, after removing regions with complex linkage disequilibrium patterns) 
using GENESIS77, which accounts for relatedness between individuals, calculated 
using KING78.

Imputation was conducted using the Michigan Imputation Server79 with 1000 
Genomes phase 3 version 5 as the reference panel49 (for AGRE and SSC), with 
the HRC r1.1 2016 reference panel80 (for AIMS-2-TRIALS) or using the TOPMed 
imputation panel81 (for both releases of SPARK). Details of imputation have been 
previously reported82. SNPs were excluded from polygenic risk scores if they had 
minor allele frequency <1%, had an imputation r2 < 0.4 or were multi-allelic.

Polygenic scores. We restricted our PGS associations to four GWAS. First, we 
included a GWAS of autism from the latest release from the iPSYCH cohort 
(iPSYCH-2015)83. This includes 19,870 autistic individuals (15,025 males and 4,845 
females) and 39,078 individuals without an autism diagnosis (19,763 males and 
19,315 females). All individuals included in this GWAS were born between May 
1980 and December 2008 to mothers who were living in Denmark. GWAS was 
conducted on individuals of European ancestry, with the first ten genetic principal 
components included as covariates using logistic regression as provided in PLINK. 
Further details are provided elsewhere49. We additionally included GWAS for 
educational attainment (n = 766,345, excluding the 23andMe dataset)35, intelligence 
(n = 269,867)34, ADHD (n = 20,183 individuals diagnosed with ADHD and 35,191 
controls)36 and schizophrenia (69,369 individuals diagnosed with schizophrenia 
and 236,642 controls)37. These GWAS were selected given the relatively large 
sample size and modest genetic correlation with autism. Additionally, as a negative 
control, we included PGS generated from a GWAS of hair color (blonde versus 
other, n = 43,319 blondes and n = 342,284 others) from the UK Biobank, which was 
downloaded from https://atlas.ctglab.nl/traitDB/3495. This phenotype has SNP 
heritability comparable to that of the other GWAS used (h2 = 0.15, s.e. = 0.014), 
is unlikely to be genetically or phenotypically correlated with autism and related 
traits, and has a sample size large enough to be a reasonably well-powered  
negative control.

PGS were generated for three phenotypes using polygenic risk scoring with 
continuous shrinkage (PRS-CS)84, which is among the best-performing polygenic 
scoring methods using summary statistics in terms of variance explained85. In 
addition, this method bypasses the step of identifying a P-value threshold. We set 
the global shrinkage prior (φ) to 0.01, as is recommended for highly polygenic 
traits. Details of the SNPs included are provided in Supplementary Table 3.

De novo variants were obtained from Antaki et al.19. De novo variants 
(structural variants and SNVs) were called for all SSC samples and a subset of the 
SPARK samples (phase 1 genotype release, SNVs only). To identify high-impact 
de novo SNVs, we restricted data to variants with a known effect on protein. 
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These are damaging variants: ‘transcript_ablation’, ‘splice_acceptor_variant’, 
‘splice_donor_variant’, ‘stop_gained’, ‘frameshift_variant’, ‘stop_loss’, ‘start_loss’ or 
missense variants with MPC86 scores >2. We further restricted data to variants in 
constrained genes with a LOEUF score <0.37 (ref. 87), which represent the topmost 
decile of constrained genes. For SVs, we restricted data to SVs affecting the most 
constrained genes, that is, those with LOEUF score <0.37, representing the first 
decile of most constrained genes. We did not make a distinction between deletions 
or duplications. To identify carriers, non-carriers and parents, we restricted our 
data to samples from the SPARK and SSC studies that had been exome sequenced 
and families in which both parents and the autistic proband(s) passed the 
genotyping QC.

For genes associated with severe developmental disorders, we obtained 
the list of constrained genes that are significant genes associated with severe 
developmental disorders from Kaplanis et al.27. To investigate the association of 
this set of genes with autism and developmental disorders, we first identified 
autistic carriers with a high-impact de novo variant and then divided this group 
into carriers who had at least one high-impact de novo variant in a DD gene and 
carriers with high-impact de novo variants in other constrained genes.

Only individuals with undiagnosed developmental disorders are recruited 
into the Deciphering Developmental Disorders study, and, as such, known genes 
associated with developmental disorders that are easy for clinicians to recognize 
and diagnose may be omitted from the genes identified by Kaplanis et al.27. To 
account for this bias, we ran sensitivity analyses using a larger but overlapping 
list of genes identified from the Developmental Disorder Gene-to-Phenotype 
database (DDG2P). From this database, we used constrained genes that are either 
‘confirmed’ or ‘probable’ developmental disorder genes and genes for which 
heterozygous variants lead to developmental phenotypes (that is, mono-allelic or 
X-linked dominant).

Phenotypes. Core and associated autism features. We identified 19 autism core and 
associated features that (1) are widely used in studies related to autism; (2) are a 
combination of parent-, self- and other-reported and performance-based measures 
to investigate if reporter status affects the PGS association; (3) are collected in all 
three cohorts; and (4) cover a range of core and associated features in autism. The 
core features are

 1. ADOS88: social affect
 2. ADOS88: restricted and repetitive behavior domain total score
 3. ADI89: communication (verbal) domain total score
 4. ADI89: restricted and repetitive behavior domain total score
 5. ADI89: social domain total score
 6. RBS28

 7. Parent-reported Social Responsiveness Scale-2 (ref. 90): total raw scores
 8. SCQ29

 9. Insistence of sameness factor (F1)
 10. Social interaction factor (F2)
 11. Sensory–motor behavior factor (F3)
 12. Self-injurious behavior factor (F4)
 13. Idiosyncratic repetitive speech and behavior (F5)
 14. Communication skills factor (F6).

The associated features are

 1. Vineland Adaptive Behavior Scales91: composite standard scores
 2. Full-scale IQ
 3. Verbal IQ
 4. Nonverbal IQ
 5. Developmental Coordination Disorders Questionnaire92.

Measures of IQ were quantified using multiple methods across the range of IQ 
scores in the AGRE, SSC and LEAP studies. In the SPARK study, IQ scores were 
available based on parent reports on ten IQ score bins (Fig. 1c). We used these as 
full-scale scores. For analyses involving the SPARK and SSC cohorts, we converted 
full-scale scores from the SSC into IQ bins to match what was available from the 
SPARK study and treated them as continuous variables based on examination of 
the frequency histogram (Supplementary Fig. 8). For the six factors, we excluded 
individuals who were minimally verbal (Factor analyses), but these individuals 
were not excluded for analyses with other autism features.

Developmental phenotypes. We identified seven questions relating to developmental 
delay in the SPARK medical screening questionnaire. These are all binary questions 
(yes or no). Summed scores ranged from 0 to 7. The developmental phenotypes 
include the presence of

 1. ID, cognitive impairment, global developmental delay or borderline intel-
lectual functioning

 2. Language delay or language disorder
 3. Learning disability (learning disorder, including reading, written expression 

or math; or nonverbal learning disability)
 4. Motor delay (for example, delay in walking) or developmental coordination 

disorder
 5. Mutism

 6. Social (pragmatic) communication disorder (as included in DSM IV TR and 
earlier)

 7. Speech articulation problems.

We included the age of first words and the age of walking independently 
for further analyses. This was recorded using parent-reported questionnaires in 
the SPARK study and in ADI-R89 in the SSC study. While other developmental 
phenotypes are available, we focused on these two, as they represent major 
milestones in motor and language development and are relatively well 
characterized.

Statistics. Note of distribution of phenotypes and statistical analyses. Before any 
statistical analyses, we visually inspected the distributions of the variables. All 
continuous variables were approximately normally distributed with the exception 
of the ‘age of first words’, the ‘age of walking independently’ and the count of 
co-occurring developmental disabilities. For these three variables, we used 
quasi-Poisson or negative binomial regression to account for overdispersion in 
the data and because the variance was much greater than the mean. These models 
produced the same estimate but modestly different standard errors. Both have 
two parameters. However, while quasi-Poisson regression models the variance 
as a linear function of the mean, the negative binomial models the variance as 
a quadratic function of the mean. The model that produced the lower residual 
deviance was chosen between the two. For all other continuous variables, we used 
linear regression and parametric tests. For binary data, we used logistic regression 
as there was not a large imbalance in the case:control ratio.

Genetic association analyses. For each cohort, PGS and high-impact de novo 
variants were regressed against the autism features with sex and the first ten 
genetic principal components as covariates in all analyses, with all continuous 
independent variables standardized. In addition, array was included as a covariate 
in SSC and AGRE datasets. This was performed using linear regression for 
standardized quantitative phenotypes, logistic regression for binary phenotypes 
(for example, association between PGS and the presence of a high-impact de novo 
variant), Poisson regression for count data (number of developmental disorders or 
delays, not standardized) and negative binomial regression for the age of walking 
independently or the age of first words (not standardized; MASS93 package in R).

For the association between genetic variables and core and associated autism 
phenotypes, we first conducted linear regression analyses for the four PGS first 
using multivariate regression analyses with data from SPARK (waves 1 and 2), SSC, 
AGRE and AIMS-2-TRIALS LEAP. This is of the form:

y ≈ PGSautism + PGSschizophrenia + PGSEA + PGSintelligence + sex + age + 10PCs,
(1)

where EA is educational attainment and 10PCs are ten principal components. For 
the negative control, we added the negative control as an additional independent 
variable in equation (1):

y ≈ PGSautism + PGSschizophrenia + PGSEA + PGSintelligence

+PGShair color + sex + age + 10PCs.
(2)

For the AGRE and SPARK studies, we ran equivalent mixed-effects models 
with family ID modeled as random intercepts to account for relatedness between 
individuals. This was carried out using the lme4 (ref. 94) package in R.

For high-impact de novo variants, we included the count of high-impact 
de novo variants as an additional independent variable in equation (1) and ran 
regression analyses for SPARK (wave 1 only) and SSC. To ensure interpretability 
across analyses, we retained only individuals who passed the genotypic QC, which 
included only individuals of European ancestries. Family ID was included as a 
random intercept:

y ≈ PGSautism + PGSschizophrenia + PGSEA + PGSintelligence

+high-impact de novo count + sex + age + 10PCs.
(3)

Effect sizes were meta-analyzed across the three cohorts using 
inverse-variance-weighted meta-analyses with the following formula:

wi = SE−2
i

SEmeta =
√

(

(Σ1wi)
−1)

βmeta = Σiβiwi(Σiwi)
−1,

(4)

where βi is the standardized regression coefficient of the PGS, SEi is the associated 
standard error and wi is the weight. P values were calculated from Z scores. 
Given the high correlation between the autism features and phenotypes, we used 
Benjamini–Yekutieli false discovery rates to correct for multiple testing (corrected 
P < 0.05). We calculated heterogeneity statistics (Cochran’s Q and I2 values) for the 
PGS meta-analyses but not for the associations with high-impact de novo variants, 
as the latter were calculated using only two datasets (SSC and SPARK).
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For the SPARK and SSC studies, we investigated the association between PGS 
(equation (1)) and being a carrier of a high-impact de novo variant (equation (3)) 
and the age of first walking and first words using negative binomial regression 
and conducted inverse-variance meta-analyses (equation (4)). We ran the same 
analyses for the SPARK study to investigate the association between PGS (equation 
(1)) and high-impact de novo variants (equation (3)) and counts of co-occurring 
developmental disabilities (quasi-Poisson regression). Leave-one-out analyses were 
conducted by systematically excluding one of seven co-occurring developmental 
disabilities and reconducting the analyses.

To investigate additivity between common and high-impact de novo variants, 
we conducted logistic regression with carrier status as a dependent binary variable 
and all PGS included as independent variables and genetic principal components, 
sex and age included as covariates. This was carried out separately for SPARK 
(wave 1) and SSC and meta-analyzed as outlined earlier.

Phenotypic analyses. Statistical significance of differences in factor scores between 
sexes were computed using t-tests. Associations with age and IQ bins were 
conducted using linear regressions after including sex as a covariate.

Matrix equivalency tests were conducted using the Jennrich test in the psych66 
package in R. Power calculations were conducted using simulations. Statistical 
differences between pairwise correlation coefficients (carriers versus non-carriers) 
in core and associated features were tested using the package cocor95 in R. Using 
scaled existing data on full-scale IQ, adaptive behavior and motor coordination, 
we generated correlated simulated variables at a range of correlation coefficients to 
reflect the correlation between the six core factors and the three associated features. 
We then ran regression analyses using the simulated variable and high-impact 
de novo variants as provided in equation (3). We repeated this 1,000 times and 
counted the fraction of outcomes for which the association between high-impact 
de novo variant count and the simulated variable had P < 0.05 to obtain statistical 
power. Differences in the age of walking and the age of first words between groups 
of autistic individuals and siblings were calculated using Wilcoxon rank-sum tests.

Sex differences: polygenic transmission disequilibrium tests. Polygenic transmission 
deviation was conducted using polygenic transmission disequilibrium tests14. To 
allow comparisons with midparental scores, residuals of the autism PGS were 
obtained after regressing out the first ten genetic principal components. These 
residuals were standardized by using the parental mean and standard deviations. We 
obtained similar results using PGS that had not been residualized for the first ten 
genetic principal components. We defined individuals without co-occurring ID as 
individuals whose full-scale IQ is above 70 the SSC and SPARK studies. Additionally, 
in the SPARK cohort, we excluded any of these participants who had a co-occurring 
diagnosis of ‘intellectual disability, cognitive impairment, global developmental 
delay or borderline intellectual functioning’. Analyses were conducted separately in 
the SSC and SPARK cohorts and meta-analyzed using inverse-variance-weighted 
meta-analyses. We additionally conducted pTDT analyses on non-autistic siblings to 
investigate differences between males and females.

Sex differences: high-impact de novo variants. For sex differences in high-impact 
de novo variants, we calculated relative risk in autistic females versus males 
based on (1) all carriers, (2) carriers of DD genes and (3) carriers of non-DD 
genes (SPARK wave 1 and SSC). For sensitivity analyses, we conducted logistic 
regression with sex as the dependent variable and carrier status for DD genes and 
either full-scale IQ and motor coordination scores (in SPARK wave 1 and SSC) or 
number of developmental disorders (only in SPARK wave 1) as covariates. For each 
sensitivity analysis, we provide the estimates of the unconditional analysis as well 
(that is, without the covariates).

Heritability analyses. We opted to conduct heritability analyses using unscreened 
population controls rather than family controls (that is, pseudocontrols or 
unaffected family members), as this likely reduces SNP heritability96 owing to 
parents having higher genetic likelihood for autism compared to unselected 
population controls55 and due to assortative mating97. Case–control heritability 
analyses were conducted using the ABCD cohort as population controls; 
specifically, the ABCD child cohort in the USA, recruited at the age of 9 or 10 
years. This cohort is reasonably representative of the US population in terms of 
demographics and ancestry. As such, it represents an excellent comparison cohort 
for the SPARK and SSC cohorts. The ABCD cohort was genotyped using the 
Smokescreen genotype array, a bespoke array designed for the study containing 
over 300,000 SNPs. Genetic QC was conducted identically as for SPARK. 
Genetically homogeneous groups were identified using the first five genetic 
principal components followed by UMAP clustering with the 1000 Genomes data. 
We restricted our analyses to 4,481 individuals of non-Finnish European ancestries 
in the ABCD cohort. Scripts for this are available at https://github.com/vwarrier/
ABCD_geneticQC. Imputation was conducted, similar to the analysis of SPARK 
data, using the TOPMed imputation panel.

For case–control heritability analyses, we combined genotype data from the 
ABCD cohort and from autistic individuals from the SPARK and SSC cohorts. 
We restricted the analysis to 6,328,651 well-imputed SNPs (r2 > 0.9) with minor 
allele frequency >1% in all datasets. Furthermore, we excluded multi-allelic 

SNPs and SNPs with minor allele frequency difference of >5% between the three 
datasets and, in the combined dataset, were not in Hardy–Weinberg equilibrium 
(P > 1 × 10−6) or had genotyping rate <99%. We additionally excluded related 
individuals, identified using GCTA-GREML, and individuals with genotyping rate 
<95%. We calculated genetic principal components for the combined dataset using 
52,007 SNPs with minimal linkage disequilibrium (r2 = 0.1, 1,000 kb, step size of 
500 variants, removing regions with complex long-range linkage disequilibrium). 
Visual inspection of the principal-component plots did not identify any outliers 
(Supplementary Fig. 9). While our QC procedure is stringent, we note that there 
will be unaccounted-for effects in SNP heritability due to fine-scale population 
stratification, differences in genotyping array and participation bias in the autism 
cohorts. However, our focus is on the differences in SNP heritability between 
subgroups of autistic individuals, and unaccounted-for case–control differences 
will not affect this.

We calculated SNP heritability for autism and additionally in subgroups 
stratified for the presence of ID, sex, sex and ID together, and the presence of 
high-impact de novo variants. We also conducted SNP heritability in subgroups 
of autistic individuals with scores >1 s.d. from the mean for each of the six factors, 
autistic individuals with F1 scores > F2 scores and autistic individuals with F2 
scores > F1 scores.

We calculated the observed-scale SNP heritability (baseline and subgroups) 
using GCTA-GREML52,53 and, additionally, using PCGC54. In all models except for 
the sex-stratified models, we included sex, age in months and the first ten genetic 
principal components as covariates. In the sex-stratified models, we included 
age in months and the first ten genetic principal components as covariates. For 
sex-stratified heritability analyses, both case and control data were from the 
same sex. For GCTA-GREML, the observed-scale SNP heritability was converted 
into liability-scale SNP heritability using equation (23) from Lee et al.98. PCGC 
estimates SNP heritability directly on the liability scale using the prevalence rates 
from Maenner et al.99. For all analyses, we ensured that the number of cases did not 
exceed the number of controls, with a maximum case:control ratio of 1.

We used prevalence rates from Maenner et al.99, which provides prevalence of 
autism among 8 year olds (1.8%). The study also provides prevalence rates by sex 
and by the presence of ID. However, there is wide variation in autism prevalence. 
We thus recalculated the SNP heritability across a range of state-specific prevalence 
estimates obtained from Maenner et al.99. For estimates of liability-scale heritability 
for subtypes defined by factor scores >1 s.d. from the mean, we estimated a 
prevalence of 16% of the total prevalence. For F1 > F2 and F2 > F1, prevalence 
was estimated at 50% of the total autism prevalence. Estimating approximate 
population prevalence of autistic individuals with high-impact de novo variant 
carriers is difficult due to ascertainment bias in existing autism cohorts. However, a 
previous study has demonstrated that the mutation rate for rare protein-truncating 
variants is similar between autistic individuals and siblings from the SSC and 
autistic individuals and population controls from the iPSYCH sample in Denmark, 
which does not have a participation bias100, implying that the de novo mutation 
rate in autistic individuals from the SPARK and SSC cohorts may be generalizable. 
Using the sex-specific proportion of de novo variant carriers and autism 
prevalence, we calculated a prevalence of 0.2% for being an autistic carrier of a 
high-impact de novo variant.

For sex-stratified SNP heritability analyses, we additionally calculated SNP 
heritability for a range of state-specific prevalence estimates to better model 
state-specific factors that contribute to autism diagnosis. In addition, using a total 
prevalence of 1.8%, we estimated SNP heritability using a male:female ratio of 3.3:1 
(ref. 51) to account for diagnostic bias that may inflate the ratio.

We used GCTA-GREML to also estimate SNP heritability for the six factors, 
full-scale IQ and the bivariate genetic correlation between them. We used the same 
set of SNPs used in the case–control analyses. We were unable to conduct bivariate 
genetic correlation for the case–control datasets due to limitations of sample size.

Ethics. We received ethical approval to access and analyze de-identified genetic 
and phenotypic data from the three cohorts from the University of Cambridge 
Human Biology Research Ethics Committee.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genetic and phenotypic data for SFARI and SPARK are available upon application 
and approval from the Simons Foundation (https://www.sfari.org/resource/
autism-cohorts/). Approved researchers can obtain the SPARK and SSC 
population datasets described in this study by applying at https://base.sfari.org. 
Data for AGRE are available upon application and approval from Autism Speaks 
(https://www.autismspeaks.org/agre). Data for EU-AIMSLEAP are available 
upon application and approval to the EU-AIMSLEAP committee (https://www.
eu-aims.eu/the-leap-study). DDG2P phenotypes can be obtained here: https://
www.deciphergenomics.org/ddd/ddgenes. GWAS data are available for hair color 
(https://atlas.ctglab.nl/traitDB/3495), schizophrenia and ADHD (https://www.
med.unc.edu/pgc/download-results/), intelligence (https://ctg.cncr.nl/software/
summary_statistics/) and educational attainment (https://thessgac.com/).
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Code availability
All scripts used in this study are available as follows: genetic QC and imputation 
in SSC (https://github.com/vwarrier/SSC_liftover_imputation; basic scripts used 
for imputing the SSC genotyped datasets), genetic QC and imputation in SPARK 
(https://github.com/vwarrier/SPARK_QC_imputation; QC and imputation of the 
SPARK dataset), genetic QC and imputation in the ABCD cohort (https://github.
com/vwarrier/ABCD_geneticQC), bespoke genetic analyses (https://github.com/
vwarrier/autism_heterogeneity; this git has the code for the heterogeneity in the 
Autism Project). We used the following software packages: PRScs (https://github.
com/getian107/PRScs; polygenic prediction via continuous shrinkage priors), the 
TOPMed Imputation Server (https://imputation.biodatacatalyst.nhlbi.nih.gov/), 
PLINK (PLINK 2.0 (https://www.cog-genomics.org/)), GCTA-GREML (PLINK 2.0 
(https://cnsgenomics.com/)), PCGC (PCGC regression (https://dougspeed.com/)). 
The following R packages were used: psych 2.1.6, cocor 1.1-3, lavaan 0.6-5, MASS 
7.3-54, lme4 1.1-27.1.
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