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Abstract 

An increasing number of large‑scale multi‑modal research initiatives has been conducted in the typically developing 
population, e.g. Dev. Cogn. Neur. 32:43‑54, 2018; PLoS Med. 12(3):e1001779, 2015; Elam and Van Essen, Enc. Comp. 
Neur., 2013, as well as in psychiatric cohorts, e.g. Trans. Psych. 10(1):100, 2020; Mol. Psych. 19:659–667, 2014; Mol. Aut. 
8:24, 2017; Eur. Child and Adol. Psych. 24(3):265–281, 2015. Missing data is a common problem in such datasets due 
to the difficulty of assessing multiple measures on a large number of participants. The consequences of missing 
data accumulate when researchers aim to integrate relationships across multiple measures. Here we aim to evalu‑
ate different imputation strategies to fill in missing values in clinical data from a large (total N = 764) and deeply 
phenotyped (i.e. range of clinical and cognitive instruments administered) sample of N = 453 autistic individuals and 
N = 311 control individuals recruited as part of the EU‑AIMS Longitudinal European Autism Project (LEAP) consortium. 
In particular, we consider a total of 160 clinical measures divided in 15 overlapping subsets of participants. We use 
two simple but common univariate strategies—mean and median imputation—as well as a Round Robin regression 
approach involving four independent multivariate regression models including Bayesian Ridge regression, as well as 
several non‑linear models: Decision Trees (Extra Trees., and Nearest Neighbours regression. We evaluate the models 
using the traditional mean square error towards removed available data, and also consider the Kullback–Leibler diver‑
gence between the observed and the imputed distributions. We show that all of the multivariate approaches tested 
provide a substantial improvement compared to typical univariate approaches. Further, our analyses reveal that across 
all 15 data‑subsets tested, an Extra Trees regression approach provided the best global results. This not only allows the 
selection of a unique model to impute missing data for the LEAP project and delivers a fixed set of imputed clinical 
data to be used by researchers working with the LEAP dataset in the future, but provides more general guidelines for 
data imputation in large scale epidemiological studies.
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Introduction
In clinical settings, a broad array of data using question-
naires, observational methods or interviews, and behav-
ioural assessments is acquired that involve a number of 
individuals ( n ) and a number of clinical variables ( p ). 
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Missing data is a general problem in data analyses [1–6] 
since most algorithms cannot directly handle the pres-
ence of missing values. Although there exist models able 
to handle missing observations, these are scarce, strongly 
tailored for specific analyses and consequently their use 
is limited and not a standard procedure [7–9]. Instead, 
the usual way researchers proceed in such cases is to 
reduce the sample size ( n ) by removing individuals with 
missing data variables, i.e. Available Case Analyses [10], 
resulting in a decrease of statistical power for any further 
analyses [11]. This problem becomes most notable when 
performing multi-modal analyses involving multiple 
variables [12, 13], for example classification or cluster-
ing, since the number of individuals available in any such 
analyses will be limited by the simultaneous availability 
of several clinical measures, reducing the sample size 
even further. A reduced sample size has a direct effect on 
the statistical power resulting in reduced sensitivity to 
and specificity of findings as well as limiting the degree 
to which sample heterogeneity can be investigated. This 
is problematic especially in cases where a small effect is 
usually expected, as it is the case for example in compu-
tational psychiatry. At the same time, an increased sam-
ple size will also provide more confidence in the observed 
patterns and increases reproducibility. Other important 
issues when excluding participants due to one or more 
missing values are both the associated ‘economic cost’ 
in the sense of not utilising all the (research) resources 
invested in the study, and the ethical issue of “human 
cost”, i.e. high time investment on the part of the experi-
menter and the participants during data collection. Fur-
ther, data loss can have an even bigger impact on analyses 
where one wants to study the relationship between dif-
ferent data modalities, such as clinical/behavioural varia-
bles and neuroimaging or genetic data [14, 15]. Basically, 
missing clinical measures reduce the full imaging/genetic 
sample resulting in a significant loss of statistical power, 
and a dramatic under-utilisation of investment on the 
part of funders, researchers and research participants. 
This is particularly a problem in the case of big-data con-
sortia where a wide range of expensive data collections 
are performed [16–25] . An alternative approach to deal 
with missing data values is data imputation [30]. This 
approach substitutes missing values by applying a statis-
tical estimation of their values, and consequently avoids 
reducing the sample size and prevents associated loss 
issues. A very common and simple strategy for imputa-
tion of behavioural or clinical data is substituting indi-
vidual missing values by the mean or the median of the 
observed sample values of the respective variable. Even 
though this approach allows one to retain the original 
sample size, it does not improve the statistical power of 
consequent analyses, the reason being that the number 

of independent clinical observations (the ‘true’ degrees of 
freedom for a particular measure) remains fixed. Further-
more, such simplistic imputation strategies are not well 
suited when heterogeneity can be expected in the clini-
cal group, e.g. when the distribution of observed values is 
not unimodal. A more advanced strategy which circum-
vents this shortcoming of mean/median imputations, and 
is thus able to increase the amount of independent obser-
vations, is based on multivariate regression models [31]. 
These use all clinical variables to obtain expectations 
over the values at each missing value per variable [32]. 
Such an approach typically uses a Round-Robin [33, 34] 
scheduled regression where missing values expectations 
are iteratively updated through all variables until conver-
gence of the distribution of the missing values is reached. 
This procedure can be found in the literature under dif-
ferent notations as imputation by means of chained equa-
tions [34], sequential regression imputation [35] or more 
generally, fully conditional specification [36]. In such 
approaches, every missing value expectation for a given 
variable is different for different participants since it is 
based on the observations and expectations of all vari-
ables for each participant independently. Consequently, 
this approach increases the number of independent 
observations with respect to the simpler univariate impu-
tation approaches. Obviously, Round-Robin multivariate 
regression strategy results are dependent on the regres-
sion model chosen, and in fact, this choice is the biggest 
difference between the most common imputation pack-
ages used in practice. For example, some common pack-
ages use parametric regression procedures [34], whereas 
others use non-parametric regression models [37], all 
cases embedded in a Round-Regression scheduling pro-
cess. Such models can in addition be evaluated with sev-
eral random initializations, i.e. multiple imputation [38], 
to obtain statistics reflecting also the uncertainty over the 
estimated parameters.

In this work, we use behavioural/clinical data from the 
European Autism Interventions Multicenter Study (EU-
AIMS), Longitudinal European Autism Project (LEAP) 
consortium – the largest, international multi-centre ini-
tiative dedicated to identifying biomarkers in Autism 
Spectrum Disorder (henceforth ‘autism’). To study 
autism at the neurobiological and genetic level, data were 
collected from a population of individuals with an autism 
diagnosis as well as from typically developing (TD) indi-
viduals between 6–30 years of age. The sample is deeply 
phenotyped with an extended battery of behavioural, 
cognitive and clinical assessments alongside a wide range 
of quantitative measurements such as electroencepha-
logram, structural and functional magnetic resonance 
imaging, biochemical markers and genomics [17]. In 
the LEAP sample in particular, and in most large-scale 
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imaging consortia in general, missing behavioural and 
clinical data has a large impact due to the extensive and 
expensive battery of imaging and genetic data acquired. 
Consequently, clinical data imputation has shown itself 
necessary to fully exploit the potential of such a rich and 
valuable dataset. The need becomes even more evident in 
the context of longitudinal study designs such as LEAP, 
where missing behavioural and clinical data at one time-
point poses additional challenges for meaningful longitu-
dinal analyses. The aim of the present work is to perform 
a systematic and extensive evaluation of different impu-
tation models to be able to provide a state-of-the-art 
imputation procedure for the EU-AIMS LEAP cohort in 
particular and provide a unique set of imputed data to 
use for all researchers involved in LEAP. Consequently, 
our present work aims to avoid biases resulting from dif-
ferent researchers using different models to impute clini-
cal data for their future individual analyses when relating 
for example brain or genetics data to clinical measures. 
Since the evaluation of such models is not trivial, we 
develop quantitative measures to assess the quality of the 
imputation.

Methods
The dataset
EU-AIMS LEAP is the to-date largest multi-centre, 
multi-disciplinary observational study on biomarkers for 
autism involving a large sample of 764 individuals includ-
ing 453 autistic children, adolescents and adults and 311 
TD individuals (or with mild intellectual disability [ID] 
without autism) between the ages of 6 and 30 years. Each 
individual is comprehensively characterised at multiple 
levels including their clinical profile, cognition, brain 
structure and function, biochemistry, environmental fac-
tors and genomics. This study utilises an ‘accelerated lon-
gitudinal design’, comprising four cohorts defined by age 
and ability level: Children with either autism or typical 
development aged 6–11  years and intelligence quotient 
(IQ) in the typical range, adults with either autism or 
TD aged 12–17 years and IQ in the typical range, young 
adults with either autism and TD aged 18–30 years and 
IQ in the typical range, and adolescents and adults with 
mild intellectual disability with/without autism aged 
12–30  years [17, 39]. The study involves a comprehen-
sive approach to deep phenotyping. Due to differences 
in age and ability level, measures were divided by experi-
mental design into core measures that were assessed 
in all participants, and measures that were selectively 
administered in some schedules which were appropri-
ate for adolescents and/ or adults with higher cognitive 
function but not for children or those with mild ID. This 
includes questionnaire measures, such that parents were 
used as informants in all schedules (except for typically 

developing adults, where parents were not available 
to participate in the study) while self-report question-
naires were only used in adolescents and adults. We 
also aimed to reduce the testing burden of experimental 
tests (e.g., magnetic resonance imaging [MRI] acquisi-
tion times) for children and young people with ID. The 
full protocol includes a) demographics, such as education 
of caregiver and parental household income or medical 
history, b) observational measures of autistic features 
(e.g., Autism Diagnostic Observation Schedule [ADOS] 
[40]), c) parent-based interviews (e.g., Autism Diagnos-
tic Interview [ADI-R] [41], Vineland Adaptive Behav-
iour Scale [VABS-II] [42]), d) parent- and self-reported 
questionnaires of the core autism phenotype (e.g., Social 
Responsiveness Scale [SRS-2] [43]; Repetitive Behavior 
Scale [RBS-R] [44]; Short Sensory Profile [SSP] [45]), 
associated features (e.g., Sleep Habit Questionnaire [46], 
Empathy Quotient [47–49], Child Health and Illness 
Profile [50] and measures of commonly co-occurring 
conditions (e.g., Attention-Deficit/Hyperactivity Disor-
der [ADHD]: DSM-5 ADHD rating scale; Strenghts and 
Difficulties Questionaire [SDQ] [51]; Development and 
Well-Being Assessment [DAWBA] [52], anxiety: Beck 
Anxiety Inventory [53], depression: Beck Depression 
Inventory [54]). We deliberately included several ques-
tionnaires that overlapped in their construct content, e.g. 
assessing core features of autism, to validate them exter-
nally. This means that high correlations between some 
measures were expected. The protocol further includes 
e) cognitive assessments, including e.g., Intellectual func-
tioning (IQ): Wechsler Intelligence Scale for Children 
(WISC) [55], Wechsler Adult Intelligence Scale (WAIS) 
[55] handedness: Edinburgh Handedness Inventory [56], 
social cognition, (e.g., theory of mind: animated shapes 
task [57]; false belief task [58]);  executive function Spa-
tial Working Memory [59]. Some cognitive tests used 
behavioural response variables while others also acquired 
functional brain responses (e.g., using functional MRI 
[fMRI] Flanker task [60], Social and Non-Social Reward 
task [61], or electroencephalogram [EEG, e.g., mismatch 
negativity, face processing]). A detailed description of 
the clinical cohort and extended characterisation can be 
found in [17, 39]. In this paper we consider a set of 160 
clinical measures in total, including 2 nominal binary 
variables that contain no missing values (diagnosis and 
sex), 42 continuous valued variables and 116 ordinal 
valued variables. A complete detailed list of all included 
measures in the analyses is provided as Supplementary 
Table 1 (ST1).

The 160 measures considered in this paper expand 
self and parent reported measures, and include a subset 
of measures acquired for all 764 participants, a subset 
acquired for all 453 individuals with autism, and several 
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other subsets of measures acquired uniquely for subsets 
of individuals defined by four different enrolment sched-
ules (adults, adolescents, children or intellectual disabil-
ity [ID]. This resulted in a total of 15 different subsets 
structured based on group (autism vs. TD), schedule 
and acquisition method. A summary of all these subsets 
of participants for which measures are present is sum-
marized in Table 1, where a total of 15 different subsets 
of individuals and measures are defined. A summary of 
the number of variables (p), individuals (n), percentage of 
missing samples as well as the target group (i.e., diagnos-
tic group and enrolment schedule) in which the measure 
was supposed to be acquired in the first place (i.e., green 
vs. not acquired in the group = red).

In Fig. 1, we show the correlation structure of all these 
variables, grouped by subsets as indicated by the hori-
zontal and vertical black lines. We observe that some 
subsets do not share participants (white areas), and also 
that many measures are intercorrelated inside and across 
subsets, providing a primary motivation for multivariate 
imputation strategies. More detailed information about 
the variables included in each of these subsets can be 
found in Supplementary Table 1.

There are 28 core clinical/behavioural/demographic 
measures that include all 764 individuals (subset 1), and 
these measures include for example, age, sex, IQ or hand-
edness. In subset 2, we observe that there are 8 measures 
comprising all the 453 autistic individuals which include 
ADOS and ADI. Subset 3 comprises 653 participants and 
includes all TD individuals along with all autistic chil-
dren and adolescents; it includes 30 measures with some 
examples being repetitive behaviour or short sensory 
profile measures. Subset 4 excludes also TD adolescents 
from subset 3 and involves the Vineland Adaptive Func-
tioning Scale [42]. Subset 5 includes TD and autistic indi-
viduals, but excludes individuals with ID; this includes 
a total of 653 individuals and 4 cognitive task measures 
involving Hariri [62] and theory of mind tasks [57, 63]. 
Subset 6 excludes all children from subset 5, resulting 
in a total of 478 individuals and 32 clinical measures as 
for example Flanker [60, 64] or Social Responsive Scale 
tests [65]. Subset 7 is also acquired for TD and autistic 
individuals but excludes adults and individuals with ID 
older than 18 years, including a total of 458 participants 
and 6 measures, such as Children Social Behavior Scale 
(CSBQ) [66, 67] and Child Health and Illness Profile 
(CHIP) [72, 73] questionnaires. Without need for further 
specification of the details for the remaining subsets, it 
is clear that the individuals included in any of these sub-
sets, are also partially contained in other subsets, and 
the full picture is a complex organisation of participants 
and measures (based on diagnostic group, schedule and 
acquisition type). As a consequence of such a complex 

structure of clinical data gathering, one cannot use all 
variables for direct imputation of all the other ones since 
it would not be sensible to impute data that was not sup-
posed to be acquired in a certain group at the first stage 
which would result in bias. For example, it would not be 
appropriate to impute ADI or ADOS measures in TD 
individuals, as in this study we did not attempt to acquire 
ADI and ADOS on the TD participants. It is important 
to note that these 15 subsets of clinical measures have 
very different properties. First, in terms of the ratio of 
observations to number of variables, n/p (see Table  1). 
As such, the performance of any regression model can be 
expected to be different on each subset, even in the hypo-
thetical case of non-missing data. For completeness let’s 
remember that a higher n/p ratio allows more robust and 
reliable learning [74, 75]. Second, higher percentage of 
missing values makes the estimation of the missing val-
ues harder.

In Fig. 2 we visualize some characteristics of the miss-
ing data itself, with each row presenting one of the 15 
subsets. The left column illustrates the missing values 
themselves as blue dots, with participants represented 
in the x-axis and the number of variables included on 
that subset of the full data in the y-axis. For example, we 
can observe that subset 1 contains a few measures with 
no missing values (rows with no blue dot) which include 
diagnosis, age and sex. In general, for all subsets we can 
appreciate that white vertical lines show individuals with 
many variables acquired, while white horizontal lines 
index measures acquired for many individuals.

In the second and third columns, we color-coded the 
percentage of shared missing variables between each 
pair of individuals and the percentage of shared miss-
ing individuals between each pair of variables respec-
tively. In these two columns, darker coloured areas 
index pairs of individuals or measures with many miss-
ing shared values respectively. Fourth and fifth col-
umns present histograms of the number of individuals 
and variables missing respectively. The sixth column 
presents the correlation between the variables on each 
subset, where the non-diagonal images show the corre-
lated structure on these measures which motivates the 
use of multivariate models to estimate their missing 
values also on each of the subsets independently.

Imputation strategies 
For the remainder of this paper we denote by n the num-
ber of individuals, by p the number of variables, and by 
m the number of missing values, where m =

p
j=1mj  

and mj denotes the number of missing observations for 
the jth  variable. Consequently, we consider the imputa-
tion of a data matrix D of size n times p, where there are 
m missing values and we denote as D∗ the imputed data 
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matrix. We consider the use of six imputation strategies 
including two simple but common univariate strategies, 
mean and median imputation, as well as four multivari-
ate regression models including a linear model, Bayesian 
Ridge (BR) regression  [76], as well as several non-linear 

models, Decision Trees (DT) [77], Extra Trees (ET) [78] 
and Nearest Neighbours (NN) [71]. Table 2 provides an 
overview of these models. Since all discrete variables 
requiring imputation in this dataset are ordinal, and some 
can take a high number of possible values, we decided to 

Table 1 All clinical data from the EU‑AIMS LEAP consortium acquired at wave 1 is summarised as 15 different subsets as indicated in 
each row. The columns show the number of variables and participants included on each of these subsets as well as the percentage of 
missing data. Color‑coded columns indicated the availability (green) or lack of data (red) as acquired for a subgroup of the participants 
as indicated in each column

Abbreviations: ASD Autism spectrum disorder, TD Typically developing individuals, ID Intellectual disability
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avoid using classification models for the ordinal variables 
and impute them all using regression models followed by 
rounding when needed [79].

The univariate imputation strategies substitute all the 
missing observations at each variable jǫ{1 . . . p} by some 
relevant summary statistics at the non-missing values at 
that variable, i.e. some statistics at the available entries at 
the jth column of D . In particular here we consider the 
mean and median imputation strategies.

Such strategies are suboptimal from both a statisti-
cal and a clinical point of view; from a statistical point 
of view they ignore the correlation of the data shown in 
Figs. 1 and 2, and from a clinical point of view, since we 
know that autism, as many other neurodevelopmental 
and neuropsychiatric conditions, is clinically and etio-
logically heterogeneous, meaning that we already a pri-
ori assume that there are different relationships between 
clinical variables and underpinning mechanisms in 
potentially different subgroups.

These facts strongly motivate moving towards multi-
variate models for imputation. In the case of multivariate 

methods, since all variables are needed for imputation 
of each single variable missing values, we use a Round-
Robin [33] regression approach, treating every variable 
as an output in turn. This approach requires defining an 
order for variable imputation. For simplicity, here we 
consider an ordering where variables are imputed in an 
ascending order of number of missing values. Initially, 
once the first variable of interest to be imputed is selected 
according to the chosen variable ordering, all other vari-
ables missing data values are set to its expected value 
using mean imputation, and the considered multivariate 
regression model is used to obtain an expectation of the 
missing values on the variable of interest. Then the next 
variable of interest is selected according to the order-
ing and the originally missing values are estimated as 
above. The process is repeated for all variables to close 
the first round of the Round-Robin iterative process and 
obtain estimations for all missing values that are con-
sequently different from the initial mean imputation 
values assigned. The Round-Robin cycle is repeated as 
many times as needed, using at each round the estimated 

Fig. 1 Correlation structure of the 160 clinical measures. White areas correspond to subsets of measures with no shared participants

(See figure on next page.)
Fig. 2 Each row presents information about one of the fifteen subsets. The first column (left) presents missing data as blue dots with individuals 
presented in the x‑axis and number of clinical measures in the y‑axis. The second and third columns present the percentage of shared missing 
variables per pair of individuals, and the percentage of missing individuals per pair of behavioural measures respectively, with darker colours coding 
an increased percentage. The fourth and fifth columns present histograms showing the number of individuals missing a number of variables, and 
the number of variables being missed by a number of individuals. The sixth column present the correlation structure inside each of the subsets i.e. 
diagonal subsquares of Fig. 1
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Fig. 2 (See legend on previous page.)
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missing values from the previous round, until all imputed 
values at all variables converge. Here we set to 100 the 
maximum number of Robin-Rounds to perform. All 
imputations were performed using publicly available 
tools [80].

Order of imputation
As shown in Table 1, the clinical data breaks down to a 
very complex organization of measures according to the 
population for which they are acquired, which can be 
summarized as 15 different subsets of data. Consequently, 
it would not be sensible to impute for certain individuals 
measures that were not intended to be acquired for them 
in the experiment design. However, imputation of each of 
the 15 subsets independently would be suboptimal since 
we observed correlations also across subsets in Fig.  1. 
Consequently, one needs to combine subsets to maxim-
ise the imputation power. To that end, we performed an 
exhaustive search to find the optimal order of imputation 
of each of these subsets, while for imputation of a target 
subset we used any previously imputed subsets, as long 
as the target population is contained in the previously 
imputed subsets.

The process starts with the imputation of subset 1 in 
isolation, since all participants were planned to be meas-
ured with respect to these 28 variables. It is important 
to mention that from subset 1 we removed the clini-
cal measure ‘diagnosis’ so as to not bias the imputation 
towards the diagnosis label and avoid producing a bias 
effect in any posterior study on these imputed data. Our 
brute force optimization showed that the next subset to 
impute should be subset number 3, which is acquired for 
all participants with the only exception of autistic adults; 
for imputation of subset 3 we used the imputed values of 
subset 1, restricted to the individuals in subset 3, in addi-
tion to the variables on subset 3. After we proceeded to 
subset 4 and then to subset 2. In Table 3 we provide the 
structure of the ordering performed to maximize the 
power of all the imputation process, where an asterisk 
denotes an imputed file. The fourth column indicates the 
already imputed files that are considered for imputation 
of each input file.

Note that as a result of such experimental design, 
when considering all 160 measures in our sample 
together, there is a systematic relationship between the 
propensity of missing values at certain variables and 
the  observed  data. For example, some measures (sub-
set 10) are acquired for adults only, while age is also an 
available variable. Consequently, when considering all 
160 measures together, missing data at some variables is 
most probably missing at random (MAR) [81]. Although 
one cannot distinguish between MAR and missing not at 
random (MNAR) [81] without a follow up intervention 
in the dataset, field expertise and careful data gathering, 
suggests the absence of a MNAR structure in the vari-
ables of our dataset. Further, when considering the impu-
tation of each subset independently, or when following 
the order of imputation for the different subsets we intro-
duced here, each subset is imputed using only subjects of 
corresponding diagnosis group, age or IQ range, making 
the missing data on each subset most probably Missing 
Completely At Random (MCAR) [81]. Although there 
exist tools to get insights into whether data is MCAR or 
MAR [26, 27], it has been shown that in both cases unbi-
ased estimations can be obtained using iterative imputa-
tion schemes [28].

Evaluation
There is need for a strict validation of the imputation 
results since the imputation choice can have a strong bias 
effect on the clinical-brain/genetics associations which 
needs to be minimized. To quantify the quality of each 
imputation model we use two different measures.

Table 2 Imputation strategies considered

Imputation Strategy
Univariate Mean

Median

Multivariate Regression 
with Round‑Robin schedule

Linear Bayesian Ridge (BR)

Non‑linear Decision Trees (DT)

Extra Trees (ET)

Nearest‑Neighbours (NN)

Table 3 Order followed for imputation of the subsets. The last 
column shows the imputed subsets used for imputation of each 
subset indicated in the second column

order input output Conditioned to

1st Subset 1 Subset 1* None

2nd Subset 3 Subset 3* Subset 1*

3rd Subset 4 Subset 4* Subsets 1*, 3*

4th Subset 2 Subset 2* Subsets 1*,3*,4*

5th Subset 5 Subset 5* Subset 1*

6th Subset 6 Subset 6* Subset 1*,5*

7th Subset 7 Subset 7* Subsets 1*, 3*

8th Subset 15 Subset 15* Subsets 1*,3*

9th Subset 8 Subset 8* Subsets 1*,3*,4*

10th Subset 9 Subset 9* Subsets 1*,3*,4*,7*

11th Subset 10 Subset 10* Subsets 1*,5*,6*

12th Subset 11 Subset 11* Subsets1*,3*,5*,6*,7*,15*

13th Subset 12 Subset 12* Subsets 1*,3*,4*,5*,7*,9*

14th Subset 13 Subset 13* Subsets1*,3*,4*,15*

15th Subset 14 Subset 14* Subsets1*,3*,4*,8*,13*,15*
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1) We first compute the quality of the imputation 
using a leave-one-observation-out cross-validation 
approach. More exactly, for each imputation model, 
we perform (nxp)−m imputation problems, where 
at each of the problems we add an extra missing value 
to the original problem, let’s say at location (i, j) , 
resulting in a data matrix to be imputed with m + 1 
missing values. This means that Di,j is an originally 
observed value that has been artificially removed in a 
fold of the cross-validation loop to be able to evaluate 
the imputation error at location (i,j) by comparison 
with respect to the imputation value obtained at that 
location, D∗

i,j . For clarity of notation we denote the 
variable indexes in D as jǫ{1, . . . , p} , and the origi-
nally available observations indexes at the j-th vari-
able in D as iǫ{kj,1, . . . , kj,n−mj } . After performing the 
imputation using any selected imputation model to 
obtain an imputed data matrix D∗ , we compute the 
total error at the removed value Dij as

 To have a measure of error considering the scale of 
each variable independently, we define a relative 
error (RE) measure by dividing the observed and 
imputed values in E by the mean of the observed val-
ues at D , per each variable j independently. That is

 where µj =
1

n−mj

∑

kǫOj
Dkj.

 Consequently RE(i, j) is simply a scaled version of E(i, j) 
that relates to the size of the error with respect to the 
size of the variable values, and assigns a value of 0 in 
the case of no estimation error and a value of 1 when 
the error ( E ) is of the size of the mean observed value 
at that variable. Such representation facilitates the 
comparison of values on RE across variables taking 
values at different scales. Finally, to summarize RE 
per variable we take its mean value across the obser-
vations at that variable and we denote it as

2) We use the Kullback–Leibler (KL) divergence [75] to 
measure the overall effect of data imputation to the 
distribution of values. The KL divergence assigns a 
value of zero to identical distributions, and increas-

E
(

i, j
)

=

√

(

Dij − D∗
ij

)2

RE
(
i, j
)
=

√√√√√
(
Dij

�j

−
D∗

ij

�j

)2

=

√√√√√
(Dij − D∗

ij
)
2

�
2

j

=

√
(Dij − D∗

ij
)
2

|�j |
=

E(i, j)

|�j |

MRE(j) =
1

n −mj

∑

k�Oj

RE
(
k , j

)
,∀j�{1,… , p}(1)

ing values to distributions that deviate from each 
other. We perform the imputation of the original 
data matrix D and compute, at each variable inde-
pendently, the KL divergence between the initially 
observed distribution and the distribution of esti-
mated values at the missing participants. More pre-
cisely,

where pj(x) is the distribution of the observed values at 
the jth variable and qj(x) the distribution of the imputed 
missing values at that same variable [74].

It is to note that the amount of missing values for a par-
ticular measure, is, to a certain degree, induced by the 
experimental design. The reason is that measures were 
acquired in a defined order of relevance because it was 
expected that several participants might not complete all 
questionnaires. Consequently, by experimental design, 
there are more subjects missing specific sets of variables 
which might result in a bias in the cross-validation MRE 
at these variables. This bias could occur since artificially 
removed values might be easier to estimate than actually 
missing values (because during the iterative imputation 
one may not rely on expected values from other vari-
ables but rather on real observations). Consequently, the 
MRE might be underestimated in the cross-validation 
setting and not represent the true generalization error in 
truly missing values. This motivates the introduction of 
the second measure of error, the KL divergence, that will 
penalize models providing distributions at the missing 
values that deviate from the observed distribution.

Although each of these performance measures is 
informative for each variable, they cannot simply be 
combined since they quantify mismatch at different 
scales. However, we can build a two-dimensional error 
function by considering the MRE and KL values per vari-
able relative to some reference model. Consequently, to 
be able to consider simultaneously the MRE and the KL 
measures of error, and to be able to pull many variables 
together to draw any conclusion, we define as a reference 
model the mean imputation model, and divide for each 
variable, the MRE and the KL measures at each model by 
the MRE and KL values obtained by the mean imputa-
tion model. In this way, we obtain MRE and KL measures 
relative to the mean imputation, assigning for each vari-
able the mean imputation performance to the plane point 
(1,1), and all other performances can be pulled together 
as they represent a relative improvement with respect to 
the mean imputation. Consequently, for a given variable 
and a fixed imputation model, we consider the robeni-
ous norm of such two-dimensional ‘error vector’, i.e. the 

KL
(
pj ||qj

)
=
∑

x

pj (x)log

(
pj (x)

qj (x)

)
,∀j�{1,… , p}(2)
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square root of the sum of absolute squared values in the 
error vector [29], as a global measure of error that com-
bines both MRE and KL.

Results
Following the ordering of the 15 subsets of clinical meas-
ures indicated in Table  3, we proceeded to the imputa-
tion of the missing values in the clinical dataset from 
EU-AIMS LEAP. As illustrated in section “Methods: The 
dataset”, each of these data matrices present different 

challenges to perform their imputation, with for example 
subset 6 being more challenging than subset 2, since the 
subset has a smaller n/p ratio and has many more miss-
ing values (see Table  1). Consequently, these 15 subsets 
serve as an interesting test bed to study the robustness of 
the different algorithms in general and not uniquely for 
this dataset, since we can check the performance in the 
harder problems in relation to the simpler ones.

Figure  3 shows the MRE and KL plane relative to the 
mean imputation for each subset (subplots), with each 

Fig. 3 Visualization of the imputation performance at the clinical measures acquired at each of the subsets. Each subfigure presents the 
performance for each clinical measure in the subset as dots, and for the 6 imputation models considered (color coded). The colored squares show 
the mean across measures per model. For each subset, the x‑axis shows the mean imputation error (MRE) relative to the mean imputation model, 
and the y‑axis the KL‑divergence between the distribution at the availabel (observed) data and the imputed data at the missing values, again 
relative to the mean imputation model. Color coding in the legend: blue and yellow represent the univariate models, mean and median imputation 
respectively; green represents a multivariate linear Bayesian Ridge regression model (BR). The remaining colors encode multivariate non‑linear 
models, with brown encoding decision trees (DT), red encoding nearest neigbours (NN), brown and purple extra tree regressors (ET)
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dot representing one clinical variable in that subset, the 
different imputation models being color-coded and the 
colored squares representing the mean of the values for a 
given model in that subset. Further, the bottom right fig-
ure shows the mean performance of each model pulled 
across all measures of all 15 subsets. Recap for inter-
pretation that models that are lower with respect to 
the y-axis perform better with respect to the KL diver-
gence, while models that are plotted more to the left with 
respect to the x-axis perform better with respect to the 
MRE measure. Globally, models closer to (0,0) perform 
better. We first observe that in general the mean and 
median imputation perform much worse than all other 
models with respect to the MRE and also to the KL diver-
gences i.e. blue and yellow dots show highest error. This 
is clear evidence for superior performance of multivari-
ate models for such clinical measures imputation. With 
respect to the multivariate models we appreciate that NN 
performs well with respect to the KL, which makes sense 
since by looking at some of the closest neighbours it is 
allowed to sample the full space and get a distribution 
closer to the initially observed one. However, NN fails to 
provide a robust improvement with respect to the MRE, 
and in some subsets is even worse than the mean impu-
tation (red squares not appearing in figure, for example 
for subset 13). From the remaining three models, we 
observe that Extra Trees Regressor (purple) and Bayes-
ian Ridge Regression (green) outperform Decision Trees 
(brown). Although both Extra Trees and Bayesian Ridge 
provide an impresive improvement with respect to the 
mean imputation in terms of MRE (~ 40% reduction of 
error), Extra Trees provides a bigger improvement with 
respect to the KL divergence (~ 75 vs ~ 55% reduction of 
KL). Another interesting observation is that the imputa-
tion of all subsets provide a similar pattern of organiza-
tion of the models performances, showing the robustness 
of the models performances across all subsets. This is an 
interesting finding given the huge differences in the n/p 
ratios as well as in the number of missing observations on 
each subset (Table 1). This representation confirms that 
the median imputation provides a similar performance to 
the mean imputation and they are the less accurate from 
the considered models. It further shows that BR pro-
vides in general a very high relative MRE improvement, 
but a lower relative KL improvement than the other 
multivariate models. It further highlights that the Extra 
Tree regressor is the model performing best in expecta-
tion. In fact, to compare the best two models, a paired 
t-test between the norms of the 2-dimensional errors in 
relative KL vs MRE plane of the ET and the BR models 
showed a significantly reduced error in favor of the ET 
model (t = 4,01, p-value < 9 ×  10–5).

Discussion
We performed a comprehensive analysis and evalua-
tion of six different imputation methods to compare the 
weaknesses and strengths of different methodologies 
to perform imputation of clinical variables. To that end 
we used 15 different subsets of clinical variables from 
the EU-AIMS LEAP dataset that have considerable dif-
ferences in terms of ratio between number of variables 
and number of observations (n/p) as well as in terms 
of percentage of missing data values. We used standard 
univariate imputation techniques, i.e. mean and median 
imputation, as well as several multivariate regression 
models, i.e. Bayesian Ridge, Random Forest, Extra Trees, 
Decision trees. All the multivariate models were involved 
in a Round-Robin iterative scheduling till convergence of 
all missing values estimations. We evaluated the impu-
tation using two different error measures, computing 
the error at the originally observed data using a leave-
one-observation-out cross-validation approach, and also 
by computing the KL-divergence between the observa-
tion distributions and the imputed value distributions at 
each variable independently. To be able to compare the 
results of all models we scaled both error measures with 
respect to the mean imputation performances to obtain 
a measure of improvement with respect to the simplest 
mean imputation model. Even though the considered 
subsets had very different characteristics, the expected 
improvement with respect to the simpler mean imputa-
tion resembled in both cases a very similar pattern show-
ing that the models performed in a similar fashion at the 
simplest as well as the hardest/most complex scenarios. 
In particular we observed that Extra Tree Regression was 
likely to be the best model for imputation of this data-
set. All models were initially independently evaluated 
using grid search in a set of model parameters and the 
solution with the best set of parameters per model was 
selected and presented in this paper. In particular, for 
the Extra Tree Regression model we found that a model 
with 10 trees provided the best solution. Note that the 
Round-Robin regression approach is also implemented 
in the R-package for imputation ‘Multiple Imputation by 
chained equations’ (MICE) [34] and in fact, the python 
package we used here for imputation [80] is inspired in 
MICE. A particularity of MICE is that it models categori-
cal variables using logistic or multinomial regression and 
continuous variables using linear regression [68]. As such 
MICE has more flexibility than the presented Bayesian 
Ridge Regression model, since it is tailored to model spe-
cifically categorical variables. However, the Tree based 
methods we considered are also able to capture such cat-
egorical structure from the data, and also handle multi-
modal distributions or capture non-linearities between 



Page 12 of 15Llera et al. BMC Medical Research Methodology          (2022) 22:229 

all the variables that might be hard to model using 
MICE, or require strong modelling and data domain 
specific knowledge. This has been empirically shown 
in [69] where it was found that although the difference 
between tree based methods and parametric MICE is not 
big, tree based methods outperformed the parametric 
models. Note that handling multimodal distributions is 
necessary where high heterogeneity is observed and con-
sequently of outmost importance in the autism research 
where stratification based on clinical and imaging data is 
expected. One added particularity of MICE is that it runs 
the imputation problem many times with different ini-
tializations, returning finally the average of these imputa-
tions as final value. The most interesting of this approach 
is that it provides the standard deviation over the 
imputed values which serves as a measure of reliability 
in the imputation. Note that our extensive analyses also 
perform a validation that allows to get a measure of the 
quality of the imputation at each variable as given by the 
MRE and the KL divergences. In fact, the MRE evalua-
tion performed is embedded in a cross-validation setting, 
where at each fold a different initialization is used. Since 
the error reported is the average of all the different folds, 
to a certain extent, it resembles the multiple imputation 
average scenario. However, we also considered a multiple 
imputation scenario for the best of our models, the Extra 
Tree Regressor. As suggested [80] we did not change the 
mean imputation as initialization but we rather used 100 
different seeds to initially randomly build the regression 
trees. The results showed a standard deviation of order 
10 −3 at all the variables, showing that the estimation 
obtained using Extra Tree Regressors is extremely robust. 
Another similarity between the models employed in this 
work and well known models commonly used come from 
Random Forest regression embedded on Round-Robin 
scheduling being equivalent to another common pack-
age, missForest [37]. Although we did not include the full 
evaluation of Random Forest in this work, we performed 
several analyses during the preliminary preparation of 
this work and we observed that it would not improve ET 
or BR, its convergence was less satisfying, and the com-
putational cost was orders of magnitude bigger. Our 
choice for python software [80] is driven by the flexibil-
ity of the packages to implement several regression mod-
els within the same framework, making the comparison 
between different models simpler and less error prone. 
We believe that the choice of model, and not of software, 
is critical for the quality of the imputation.

The Round-Robin scheduling procedure requires defin-
ing a variable ordering for imputation, and although here 
we report results using an increasing number of miss-
ing observations for variable ordering, results using a 

decreasing order did show similar results, both in terms 
of squared error and in terms of KL divergences between 
the observed and the imputed distributions at most vari-
ables, and for most models. Also, the patterns of models 
performances were identical. In conclusion, we system-
atically searched the best practice scenario for imputa-
tion of the clinical variables in this sample and found that 
Extra Trees Regressor was in expectation the best model. 
Given the different characteristics of the 15 data samples 
we consider that these results might also extrapolate to 
different datasets. As a result of this analyses we deliver 
the tools for imputation comparison we developed 
at https:// github. com/ allera/ Imput ation, and deliver 
imputed data to the EU-AIMS LEAP consortium; the 
neglectable standard deviation of the estimators obtained 
in the validation of the multiple imputation scenario 
using Extra Trees Regressors allows providing a unique 
dataset of imputed values.

A natural question arising is whether we can syn-
thetically generate other missing measurements from 
such big data consortiums as for example structural 
brain images. The presented models are useful in their 
own for different types of vector data, however, models 
implementing spatial constraints should be more appro-
priate to interpolate data where a clear non-isotropic 
spatially smooth 3d distribution is expected. Ongoing 
research focuses on the imputation of missing struc-
tural MRI images, using existing structural MRI images 
and behavioural readouts, e.g. age, sex, weight. To that 
end we are considering extended convolutional neural 
networks [70] and we expect to be able to, for example, 
generate synthetic T1w images with smaller brain vol-
ume for younger participants. Once more, the quality of 
this approach can be validated by removing participants 
one at a time and checking the quality of the recovered 
image. Even more, given the relationship between struc-
tural features and functional features extracted from 
fMRI [14], we also aim to predict expected functional 
features based on structural and behavioural readouts, 
also using spatial convolution models. Such results are 
expected to follow up this work.
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