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The male preponderance in autism prevalence has
brought together the disparate topics of sex/gender and
autism research. Two directions of neuroimaging studies
on the relationships between sex/gender and autism may
inform male-specific risk mechanisms and female-
specific protective mechanisms of autism. First, we
review how sex/gender moderates autism-related brain
changes and how this informs general models of autism
etiology. Better-powered human neuroimaging studies
suggest that the brain characteristics of autism are quali-
tatively, rather than simply quantitatively, different
between males and females. However, age and comor-
bidities might substantially moderate the pattern of differ-
ences. Second, we review how the relationship between
autism-related brain changes (separately in males and
females) and normative brain sex/gender differences
informs specific etiological–developmental mechanisms.
Both human and animal studies converge to indicate that
the brain characteristics of autism are partly associated
with normative brain sex/gender differences, suggesting
convergence or overlap between the mechanisms leading
to and modifying the development of autism and the
mechanisms underlying sex differentiation and/or gender
socialization. Future animal work needs to investigate sex
differences in rodent mutants modeling autism-relevant
genes and environmental exposures. Future human work
needs to address the substantial phenotypic and etiologi-
cal heterogeneity of autism and to focus on longitudinal
neuroimaging studies (from early development) on the
developmental trajectories of sex/gender-differential neu-
ral characteristics of autism. Combining animal and
human work links up the causal chain from etiological
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factors, brain and physical development, to phenotypes.
These together help delineate the different roles of sex
and gender in relation to risk vs. protective mecha-
nisms. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Autism spectrum disorder/condition (henceforth,
“autism”) is a behaviorally defined, early-onset neurode-
velopmental syndrome marked by difficulties in social
communication and social interaction (including difficul-
ties with social-emotional reciprocity, nonverbal commu-
nication, and relationships) alongside difficulties in
behavioral flexibility (including stereotyped/repetitive
behaviors, insistence on sameness, unusually narrow inter-
ests, or atypical sensory reactivity) (APA, 2013; Lai et al.,
2014). Autism has substantial genetic etiologies (Gesch-
wind and State, 2015; Sanders et al., 2015; Lombardo
et al., 2016b) and involves atypical brain development
(Ecker et al., 2015; Sanders, 2015). However, discrete
brain bases of autism have not been unequivocally identi-
fied across individuals (Anagnostou and Taylor, 2011;
Haar et al., 2016). There is high heterogeneity across dif-
ferent levels of the biology of autism, involving over 800
genes (Sanders, 2015), and different forms of gene-
environment factors likely interplay (Mandy and Lai,
2016). The identification of common brain developmen-
tal pathways is a focus of current neuroscientific research
on autism.

Recent population studies of autism suggest a preva-
lence of around 0.76% to 2.6% (Kim et al., 2011; Mattila
et al., 2011; Baxter et al., 2015; Idring et al., 2015;
Brugha et al., 2016); for example, the latest surveillance of
clinical diagnoses in the United States shows a rate of
1.46% (Christensen et al., 2016). Autism has long been
reported as more common in males, with a sex/gender
ratio of between 4:1 and 5:1 (mostly from clinic-based
samples) (Fombonne et al., 2011; Christensen et al.,
2016), yet many recent large-scale, population-based epi-
demiological studies that involve active case ascertainment
show a male preponderance between 2:1 and 3:1 (Kim
et al., 2011; Mattila et al., 2011; Idring et al., 2012; Jensen
et al., 2014; Baxter et al., 2015). This slightly lowered
sex/gender ratio may reflect better recognition of females
in recent years (Jensen et al., 2014). Our understanding of
autism has historically been male biased because of dispro-
portionately small numbers of females being recruited
into research studies. For example, the male:female ratio
was traditionally around 8:1 in brain volumetric studies
(Via et al., 2011) and 15:1 in task functional magnetic res-
onance imaging (fMRI) studies (Philip et al., 2012). For-
tunately, in recent years, owing to more females being
identified and participating in research studies, and
because of research efforts merging multisite data, females
are increasingly better represented in autism research
(Watkins et al., 2014). This provides improved statistical

power to address different empirical and theoretical ques-
tions about the relationships between sex/gender and
autism (Lai et al., 2015).

In this article we use the term “sex/gender,”
acknowledging that “sex” refers to biology and “gender”
refers to sociocultural aspects (as based on the World
Health Organization definition, http://apps.who.int/gen-
der/whatisgender/en/), whilst also acknowledging that in
many scenarios the effects of the two cannot be unequiv-
ocally separated (Rippon et al., 2014). Delineating direct
effects of sex from effects of biological and environmental
variables correlated with sex, and from effects of compo-
nents of gender, is difficult in humans. It can only be clar-
ified by comprehensive research designs measuring (or
manipulating) sex variables across levels, and gender varia-
bles across domains, and testing for their main effects,
interaction effects, and mediation effects (Joel and
McCarthy, 2016). As most research reviewed here (and
neuropsychiatric research in general) does not test for the
separate effects of sex vs. gender, findings should be
treated as reflective of the effects of either or both—
hence, the use of the term “sex/gender” (Springer et al.,
2012).

The male preponderance in early-onset neurodeve-
lopmental conditions and female preponderance in
adolescent-onset emotional disorders may have etiological
implications (Rutter et al., 2003; Zahn-Waxler et al.,
2008). The male bias in autism prevalence has led to a
link between the research on sex/gender and on autism.
For example, it has been hypothesized that the male pre-
ponderance reflects male-specific vulnerability and
female-specific protection (Wing, 1981; Tsai and Beisler,
1983), implicating specific etiological factors associated
with sex and gender (Baron-Cohen et al., 2011; Werling
and Geschwind, 2013; Schaafsma and Pfaff, 2014). Other
research has compared behavioral or neurobiological
characteristics between males and females with autism and
speculated about etiological implications accordingly
(with or without considering possible underlying on-
average sex or gender differences that are present in
human beings) (Bloss and Courchesne, 2007; Van
Wijngaarden-Cremers et al., 2014; Supekar and Menon,
2015). The complex relationships between sex/gender
and autism can be delineated into four different levels of
inquiry to facilitate the interpretation of findings: Level 1,
nosological and diagnostic challenges; Level 2, sex/gen-
der-independent and sex/gender-dependent characteris-
tics; Level 3, general models of etiology: liability and
threshold; and Level 4, specific etiological–developmental
mechanisms (Lai et al., 2015).

The current review aims to update evidence in rela-
tion to Level 2, in neuroimaging studies, and their rele-
vance for etiological investigations at Levels 3 and 4.
Previous Level 2 investigations have shown a variety of
possible behavioral and cognitive sex/gender differences
in autism (e.g., less intensity or a different quality of
repetitive and stereotyped behavior in females, higher
social motivation and camouflaging in females, or sex/
gender differences in the profiles of executive,
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visuospatial, or sensory processing [Kirkovski et al., 2013;
Lai et al., 2015; Hull et al., 2016]). Eventually it will be
important to link findings of behavioral phenotypic sex/
gender differences with brain sex/gender differences in
autism, yet studies thoroughly addressing this are still rare.
Further investigations to clarify mechanistic relationships
between behavior and brain are required to inform etiolo-
gies of autism in relation to sex/gender.

We also discuss the contribution of animal neuroim-
aging studies of sex differences and autism. The arrival of
high-field magnets, specialized transmit/receive coils,
powerful gradients, and tailored data processing algo-
rithms has brought the wealth of human neuroimaging
techniques to rodent models. The possibility of using
brain imaging as an intermediate translation tool between
human clinical studies and rodent molecular neuroscience
is exciting. Much of our understanding of how biological
sex shapes brain development comes from rodent studies.
Early studies, for example, showed that prenatal injection
of testosterone into female rodents was sufficient to mas-
culinize brain networks and resulted in male-like sexual
behaviors in adulthood (Phoenix, 2009). Advances in our
abilities to manipulate the genome have brought mouse
studies to the fore, providing insight into molecular
mechanisms behind brain sex differences. These advances
have been elegantly reviewed (McCarthy, 2010). As our
understanding of the genetics of autism increases, so does
the importance of animal models to understand the func-
tion and interactions of putative causative genes. Novel
gene-editing techniques (Ran et al., 2013) pave the way
for the rapid translation of clinical genetics findings to
model systems. Whilst this body of research only covers a
subset of autism, since so far only 15% to 30% of people
with autism have an identified genetic mutation, it pro-
vides important clues about possible molecular mecha-
nisms underlying distinct subtypes of autism (de la Torre-
Ubieta et al., 2016).

CAN NEUROIMAGING STUDIES OF SEX/
GENDER AND AUTISM INFORM THE

ETIOLOGICAL MECHANISMS OF AUTISM?
UNCOVERING RISK AND PROTECTIVE

PROCESSES

Investigating how sex/gender manifests in the brain, how
autism manifests in the brain, and how they moderate
each other provides hypothesis testing for certain (but not
all) etiological theories of autism. This assumes that brain
changes substantially derive from the operation of etiolog-
ical (risk and protective) mechanisms. There are two sepa-
rate directions of investigation.

Note that from a statistical point of view, “risk” and
“protective” are two sides of a coin (since the absence of
a risk factor is protective, and lack of a protective factor
increases risk) that is simply one variable that shifts an
individual’s underlying liability to autism. However, from
a mechanistic point of view, “protective mechanisms”
refer to processes that operate in the presence of “risk
mechanisms,” and they can be different mechanisms

operating on the same pathophysiological pathways. We
therefore use the two terms separately, to refer to actual
mechanisms that play different roles in the emergence of
autism.

Direction 1: Investigating How Sex/Gender
Moderates Autism-Related Brain Changes, and
How This Informs Hypothesis Testing of General
Models of Autism Etiology

Most general etiological models of autism now
include an explanation of why females are more protected
from developing autism, and of the male bias in prevalence
(Lai et al., 2015). This phenomenon has been referred to
as the “female-protective effect.” It might be helpful to
distinguish “female-protective mechanisms” and “female-
protective effects (female protection),” the latter simply
restating the male preponderance in prevalence and the
former focusing on candidate etiological factors.

In population genetics, the examination of the Car-
ter effect (Carter, 1961) has often been taken as a test of
whether there is a female-protective mechanism at play
that reduces the risk of developing autism (but note that
an absence of the Carter effect does not indicate an
absence of female-protective mechanisms [Constantino,
2016]). That is, if a higher quantitative burden of genetic
susceptibility is required to cross the threshold to be
affected in females than in males, there should be a
higher level of familial aggregation of autism or autistic-
like traits amongst the relatives of females with autism
(assuming there is a positive association between the
genetic burden and behavioral characteristics). This has
been confirmed in studies measuring autistic-like traits
(Robinson et al., 2013) and when examining sibling
recurrence rates of clinical autism diagnoses in multiplex
families (Szatmari et al., 2012; Frazier et al., 2015; Werl-
ing and Geschwind, 2015). However, it is not confirmed
in studies of clinical diagnoses of autism in population-
based or high-risk “infant-sibling” samples (Constantino
et al., 2010; Ozonoff et al., 2011; Grønborg et al., 2013;
Sandin et al., 2014).

A critical issue here is that female-protective mecha-
nisms that take effect in the presence of autism risks are
most easily revealed by studying females who do not have
autism—for example, by studying females who have an
increased risk of developing autism but who do not go on
to develop the full autism phenotype (e.g., using an
infant-sibling design [Chawarska et al., 2016]). They can
then be contrasted with those who do develop the full
autism phenotype (i.e., who potentially have experienced
less protection). Family-based genetic studies (Geschwind
and State, 2015) or high-risk infant sibling designs (Jones
et al., 2014; Szatmari et al., 2016) are first steps toward
uncovering the exact protective mechanisms. With
advances in genetics potentially allowing for meaningful
quantification of etiological risks, one further way to
reveal how protective mechanisms work is to compare
individuals who have quantifiable, comparable levels of
risks but who are categorically discordant in diagnostic
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status, or, in a dimensional view, who show widely varied
levels of autistic characteristics. Phenotypically, protective
mechanisms may lead to an absence or a lower level of
symptoms such that females do not reach a threshold for
diagnosis, and that such milder levels might be more
apparent in studies of the “broader autism phenotype”
(Sucksmith et al., 2011; Piven et al., 2013).

If any candidate protective mechanisms are revealed
in individuals who carry risks but do not develop autism,
such mechanisms will then have to be ubiquitously pre-
sent in the general population so that they can be con-
firmed (i.e., so they account for the sex/gender bias in
prevalence).

In contrast, studies focusing on females with diag-
nosed autism (Turner et al., 2015) or on how males and
females with autism differ from each other (Polyak et al.,
2015) provide a direct examination of the risk mecha-
nisms of autism and how sex/gender moderates the risk
mechanisms. We therefore review neuroimaging studies
on how sex/gender moderates autism-related brain
changes (i.e., studies of sex/gender-independent and sex/
gender-dependent brain characteristics of autism), and
explain how different experimental designs are needed to
study risk vs. protective mechanisms.

Human neuroimaging studies informing risk
mechanisms. Providing that etiological risks affect
neurobiology and brain development, and subsequently
influence cognition and behaviors that define autism,
neuroimaging techniques that can reveal the structural
and functional characteristics of the brain can be used to
test at the brain level whether there is evidence support-
ing or disproving the general etiological model of female
protection. Specifically, comparing autism-related brain
changes between males and females gives clues of whether
there are quantitative and/or qualitative differences between
sexes/genders. This, in combination with additional levels
of etiological investigations, may inform sex/gender-dif-
ferential mechanisms and “brain routes” to autism.

If risk mechanisms leading to autism in males and
females are mostly quantitatively different, one would expect
the autism-related brain changes in females with autism to
be more substantial than those in males with autism. This
might be in terms of the size of the diagnostic effect in
similar brain regions, or females might show additional
brain changes beyond those seen in males (Lai et al.,
2015). These quantitative differences may echo the find-
ings that females require a greater dose of the risk factors
(e.g., genetic mutations) to exhibit the autism phenotype
(Sanders et al., 2011, 2015; De Rubeis et al., 2014; Iossi-
fov et al., 2014; Jacquemont et al., 2014). Some small-
sample studies in toddlers (with females with autism
n< 10) indeed found that in terms of cerebral cortical
lobar gray matter volume, girls with autism have more
changes (i.e., larger effect size) than males with autism
compared with same-sex/gender controls, respectively
(Bloss and Courchesne, 2007; Schumann et al., 2010), yet
for cerebellum volume the direction of change is opposite
between boys and girls with autism (Bloss and Courch-
esne, 2007). An even smaller study (with n 5 7 females

with autism) did not find female toddlers with autism
show more substantial autism-related brain changes than
boys with autism (Sparks et al., 2002). However, a recent
larger-scale source-based morphometry study analyzed a
subsample (aged 6–20 years, matched on age but not IQ
across groups) from the multicenter Autism Brain Imaging
Data Exchange (ABIDE, http://fcon_1000.projects.nitrc.
org/indi/abide/) initiative (with n 5 36 females with
autism) and found one gray matter volume source at bilat-
eral inferior and middle temporal lobes showing signifi-
cant effects of diagnosis and sex/gender. In particular, the
overall effect sizes between individuals with autism and
control subjects were slightly larger in females than in
males, but such effect was mainly found between 12 and
14 years (Di and Biswal, 2016b). This finding supports
quantitative differences, but only in a confined age range.

If brain-level evidence supporting the quantitative sex/
gender difference hypothesis can be found in more large-scale
studies, we should further examine whether the more sub-
stantial autism-related brain changes in females are related to
why these females “cross the border” to show the clinical
phenotype. Importantly, we need to test whether the associ-
ation between etiological risks (e.g., pathogenic genetic
mutations) and autism-related brain changes differs by sex/
gender. The quantitative hypothesis predicts no sex/gender
differences in the association pattern but only in the effect
size of changes at both the brain and the etiological risk lev-
els, whereas the qualitative hypothesis predicts different
association patterns by sex/gender.

If risk mechanisms leading to autism in males and
females are instead mostly qualitatively different, one would
expect that males and females with autism differ in the
kind of autism-related atypical patterns of brain activity or
structure they show (Lai et al., 2015). This has been
increasingly shown in larger-scale neuroimaging studies
(with n 5 13–53 females with autism) of brain anatomy
(Nordahl et al., 2011, 2015; Beacher et al., 2012a; Lai
et al., 2013b,; Schaer et al., 2015; Retico et al., 2016) and
functional activation patterns (Beacher et al., 2012b;
Schneider et al., 2013; Alaerts et al., 2016; Di and Biswal,
2016a; Kirkovski et al., 2016). Findings indicative of sub-
stantial sex/gender differences in autism are also found in
other levels including cognition (Bolte et al., 2011; Lem-
on et al., 2011; Lai et al., 2012; Goddard et al., 2014;
Kauschke et al., 2016; Lehnhardt et al., 2016), early phys-
ical growth trajectory (Suren et al., 2013; Campbell et al.,
2014), anthropometry (Bejerot et al., 2012), childhood
genome-wide gene expression (in transformed lympho-
blastoid cell lines) (Tylee et al., 2016), and adulthood
serum protein profiles (Schwarz et al., 2011; Kong et al.,
2012; Ramsey et al., 2012; Steeb et al., 2014). All these
imply that the biology of autism may be substantially dif-
ferent in males and females across developmental stages.

Nordahl and colleagues (2011) found that in pre-
schoolers with autism, early overall brain volume over-
growth appears more evident in some boys (i.e., those
who have developmental regression), but not in girls.
They also differ in the size and structure of the corpus cal-
losum, relative to same-sex/gender chronological age-
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matched controls (Nordahl et al., 2015). Both boys and
girls with autism have smaller callosal regions projecting
to the superior frontal cortex. However, boys with autism
have a smaller section linked to the orbitofrontal cortex,
whilst girls with autism have a smaller section linked to
the anterior frontal cortex. In addition, there are no alter-
ations in callosal fiber microstructural properties in boys
with autism relative to typically developing boys, whereas
all diffusivity measures are increased in girls with autism
relative to typically developing girls. Both male and
female preschoolers with autism in this study were, how-
ever, developmentally delayed compared with controls.
Therefore, it is difficult to rule out whether developmen-
tal level has a role in moderating the sex/gender-differen-
tial neuroanatomy.

In a separate cohort, Retico and colleagues (2016)
measured regional gray matter volume and used a support
vector machine-based analysis to generate prediction
models to classify young children (2–7 years) with autism
(with n 5 38 females with autism) vs. chronological age-
and developmental level (nonverbal IQ)-matched con-
trols. In this well-matched sample, they found that the
gray matter voxels most discriminative of autism vs. con-
trol differ substantially by sex/gender. Although both
“discrimination maps” for boys and girls involve bilateral
ventral precuneus and posterior cingulate cortex, the
majority of discriminative voxels are distinct by sex/gen-
der. Owing to the balanced match across groups, the sex/
gender-differential neuroanatomy discovered here is quite
unlikely to be confounded by factors associated with
chronological age or developmental (IQ) level.

In adults, Beacher and colleagues (2012a) in a small-
scale study (with n 5 13 females with autism; autism
groups showed lower estimated intelligence than control
groups) found a range of sex/gender-dependent autism-
related brain changes, evidenced by significant diagnosis-
by-sex/gender interactions (in a two-factorial design) in
total white matter volume, regional gray matter volume
in the right parietal operculum, and fractional anisotropy
in the body of the corpus callosum, cingulum, and corona
radiata. Lai and colleagues (2013b) also used a two-
factorial design in an independent, larger sample (with
n 5 30 females with autism; autism groups and control
groups were matched on age and full-scale IQ) and found
significant diagnosis-by-sex/gender interactions in terms
of regional brain volumes. Most importantly, using spatial
overlap analysis, they demonstrated that autism-related
brain volumetric changes in women are distinct from
those in men, across both gray and white matter. Finally,
Schaer and colleagues (2015) analyzed a well-matched
subsample from the ABIDE dataset with the largest sam-
ple of females with autism to date (n 5 53), across a wide
age range (8–39 years), with all groups matched on age
and verbal and performance IQ. In a two-factorial design
they found no main effects of diagnosis on cortical vol-
ume, thickness, or local gyrification. However, they
found a significant diagnosis-by-sex/gender interaction in
the ventromedial prefrontal and orbitofrontal cortices:
males with autism showed decreased gyrification

compared with typically developing males, whereas
females with autism showed no such decrease (but instead
a trend of increase) compared with typically developing
females. It is worth noting that source-based morphome-
try on another sample from ABIDE with a different age
range (6–20 years, matched on age but not IQ across
groups) failed to find significant diagnosis-by-sex/gender
interactions across all 20 gray matter and 20 white matter
independent volume sources in the whole sample; a trend
of interaction was, however, noted in a subgroup 12 to
14 years of age at the volume source showing significant
main effects of both diagnosis and sex/gender in the
whole sample (Di and Biswal, 2016b). Overall, these find-
ings (which mainly or partly involve adolescent and adult
samples) do not seem substantially confounded by intel-
lectual level. However, they mainly come from studying
individuals without concurrent intellectual disability. It is
therefore unknown how intellectual functioning may fur-
ther moderate teenage and adulthood sex/gender-differ-
ential neuroanatomy in autism when it comes to the
subgroups with concurrent intellectual or severe commu-
nication disabilities.

In brief, most (but not all) larger-scale studies exam-
ining neuroanatomy in autism stratified by sex/gender
converge to show overall sex/gender-differential brain
structural characteristics. Nevertheless, studies so far fre-
quently include participants spanning a wide age range,
but do not have sufficient power to formally test for the
moderating roles of age on sex/gender-differential neuro-
anatomy in autism. It has been shown that age substantial-
ly moderates autism-related brain anatomy particularly
during the teenage years in males (Zielinski et al., 2014;
Lin et al., 2015), but little is known for females. Descrip-
tively, there seems to be substantial influence from age on
how sex/gender moderates autism-related brain charac-
teristics (Di and Biswal, 2016b), but a formal examination
of age-moderating effects using well-powered large-scale
datasets is still pending.

Using the ABIDE dataset but investigating the func-
tional organization of the brain, Alaerts and colleagues
(2016) analyzed an age-matched sample (with n 5 42
females with autism, aged 7–30 years; on average, the
autism groups scored 9–10 points less than the control
groups on full-scale IQ) using seed-based (from posterior
superior temporal sulcus and posterior cingulate cortex)
and whole-brain functional connectivity analyses. They
found that males with autism generally show hypocon-
nectivity, whereas females with autism generally show
hyperconnectivity, relative to same-sex/gender controls.
The authors did not find any region for which autism-
related connectivity changes were in the same direction
in males and females, corroborated by the presence of sig-
nificant diagnosis-by-sex/gender interactions. These sug-
gest a strong sex/gender-differential neural expression of
autism in intrinsic functional organization of the resting-
state brain network (Alaerts et al., 2016). A preliminary
study also using the ABIDE dataset (with n 5 28 females
with autism, aged 6–20 years; the autism groups scored
slightly lower than the control groups on full-scale IQ)
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further identified diagnosis-by-sex/gender interactions on
the connectivity between precuneus and medial cerebel-
lum/dorsal frontal cortex (Di and Biswal, 2016a). There-
fore, sex/gender-differential neural characteristics of
autism also seem to present in the intrinsic functional
organization of the brain, and it is too early to conclude
how age or IQ moderates these findings.

Finally, in the task-evoked functional neuroimaging
literature, three fMRI studies in adults using similar facto-
rial designs to test for the moderating role of sex/gender
in the neurobiology of autism all found substantial diag-
nosis-by-sex/gender interactions in regional activation
patterns. Significant sex/gender-moderating roles on
autism-related effects were evident during an emotion
recognition and empathy task, showing decreased activa-
tion in women with autism relative to control women,
but no differences between men with autism and control
men, in the midbrain and left amygdala; however, age
was not matched across all groups (Schneider et al.,
2013). Similarly, during a mental rotation task, decreased
activation in women with autism was seen in the
temporo-parieto-occipital region relative to control
women, and increased activation in the same region was
seen in men with autism relative to control men; age was
matched across groups, but on average the autism groups
scored lower on estimated intelligence (Beacher et al.,
2012b). Finally, during an automatic mental state attribu-
tion task, no difference between women with autism and
control women was seen, but decreased activation in the
right posterior superior temporal sulcus was found in men
with autism relative to control men; age was, however,
not matched across males and females, though it was
matched across diagnostic groups (Kirkovski et al., 2016).
How these moderating roles of sex/gender might be fur-
ther influenced by age or intellectual level cannot be
determined based on the studies so far.

In sum, when better-powered datasets are used,
although it is not always clear if the main effects of diag-
nosis are present across males and females, across sample
ages (from toddlers to adults), and across imaging modali-
ties, there are almost always clear diagnosis-by-sex/gender
interactions. However, studies do not consistently show
the same pattern of interaction, or in the same brain
regions. Despite high sample heterogeneity that likely
gives rise to the lack of exact replication of regional find-
ings (except that orbitofrontal cortex has been implicated
by two studies [Nordahl et al., 2015; Schaer et al., 2015]),
the consistent message from human neuroimaging studies
so far is that the neural characteristics of autism are sub-
stantially qualitatively different between males and
females. As these neuroimaging findings are derived not
just from studies of older individuals but also toddlers,
they could reflect sex-differential etiological mechanisms
of autism that begin very early in life, even before the
appearance of the autism phenotype. However, these
neural findings could equally reflect sex/gender-differen-
tial consequences of living with autism, as most studies
are conducted with adults. Prospective neuroimaging
studies focusing on very young children before the onset

of the full syndrome of autism are complementary to the
existing literature and key to clarify the issues of nature
vs. nurture.

Human neuroimaging studies informing pro-
tective mechanisms. Neuroimaging studies could also
offer clues about the neural characteristics that reflect
(female) protective mechanisms against autism. For exam-
ple, it has been proposed that comparing brain activation
patterns during biological motion processing between
individuals with autism, their unaffected siblings (US),
and controls (TD) reveals “compensatory activity” (i.e.,
the intersection of US–TD and US–autism differences,
US>TD � US> autism) (Kaiser et al., 2010). This pat-
tern could otherwise indicate how protective mechanisms
manifest in the brain. Taking this approach to investigate
neural characteristics of females who carry risks of autism
but who do not develop an autism phenotype (e.g., in an
infant-sibling design [Szatmari et al., 2016]), and compar-
ing with the pattern in males, may inform how female-
protective mechanisms operate in the brain.

Animal neuroimaging studies. Human neuro-
imaging data show that autism-related brain changes likely
differ between males and females. However, this needs to
be interpreted in the context that neuroimaging studies in
autism are plagued by heterogeneity, with few findings
being reproducible (Anagnostou and Taylor, 2011). The
reason for this has been ascribed to a mix of the autism
phenotype in neuroanatomy being both subtle and prone
to artifacts (in particular, in-scanner head motion) (Haar
et al., 2016). An alternative hypothesis for the lack of
consistency in anatomical studies of autism relates to etio-
logical heterogeneity, with multiple genes implicated,
each accounting for only a small proportion of the etio-
logical variance, though they may converge on common
pathways (Geschwind and State, 2015; Sanders, 2015).
The combination of mouse models of genes (or environ-
mental factors) implicated in autism with high-field
mouse magnetic resonance imaging (MRI) has allowed
that question to be answered directly.

A series of individual studies (Ellegood et al., 2010,
2012, 2013, 2014; Horev et al., 2011; Dodero et al.,
2013; Portmann et al., 2014; Steadman et al., 2014;
Pagani et al., 2016) as well as an omnibus investigation of
26 mouse models (Ellegood and Crawley, 2015; Ellegood
et al., 2015) has lent credence to the role of heterogeneity
from genetics to imaging outcomes. Many individual
mutations are associated with striking patterns of neuroan-
atomical alterations, yet consistency across mutations is
limited. There is evidence for subgroupings of autistic
models based on their imaging outcomes (Ellegood et al.,
2015), an effort that will have to be extended to more
models and reconciled with human neuroimaging data.

The vast majority of these studies, as is common in
basic research (Beery and Zucker, 2011), were conducted
in male mice only. The male preponderance of autism
makes the choice of males obvious if experiments are car-
ried out in a single sex only, though it is clearly a missed
opportunity that the research community must remedy
going forward. Yet the existing mouse data do suggest
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that one possible interpretation of the diagnosis-by-sex/
gender interactions in the human neuroimaging data is
that, whilst sample sizes are still relatively small, the mix
of etiologies included among males and females in each
sample might have differed enough to drive the apparent
interaction.

Direction 2: Clarifying the Relationship Between
Autism-Related Brain Changes (Separately in
Males and Females) and Normative Sex/Gender
Differences in the Brain May Inform Specific
Etiological–Developmental Mechanisms

Female-specific protective mechanisms and male-
specific risk mechanisms may both account for the male
preponderance of and female protection against autism
(Werling and Geschwind, 2013). Moving from general
models of etiology (Level 3) to identify specific etiologi-
cal–developmental mechanisms (Level 4) (Lai et al.,
2015), one approach is to examine factors associated with
normative/typical sex and gender differentiation to see if
they also act as risk or protective mechanisms to the sex/
gender-differential liability of autism. In other words, this
involves clarifying the relationship between normative
sex/gender differences and characteristics of autism. It is
worth noting that these are not necessarily sex/gender-
independent etiologies for autism.

Genetic and molecular bases. At the biological
level, sex differentiation originates from the interplay of
genetic variations, prenatal environments, and epigenetic
effects (McCarthy, 2016), which are all candidate mecha-
nisms for sex/gender-differential liability of autism (Bar-
on-Cohen et al., 2011; Schaafsma and Pfaff, 2014; Lai
et al., 2015). Brain gene expression studies show that sex-
differentially expressed genes do not overlap with autism
candidate genes (Ziats and Rennert, 2013), and there is
no systematic sex-differential expression of autism risk
genes (Werling et al., 2016). However, genes expressed at
higher levels in males are significantly enriched for genes
upregulated in expression in autistic brains (that highlight
downstream or interacting pathways including astrocyte
and microglia markers, but not autism risk genes them-
selves) (Werling et al., 2016). In addition, gene ontology
enrichment analysis also indicates that male-biased tran-
scriptional modules/pathways are also implicated by
autism candidate genes (Ziats and Rennert, 2013). These
findings imply that typical males sit closer to the liability
threshold for developing autism based on naturally male-
heightened gene expression patterns in the brain (e.g.,
those involving astrocyte and microglial functions), and
typical females sit farther from the threshold owing to
heightened expression of potentially “protective” genes
(e.g., those involving neuronal and synaptic functions).

In terms of sex-related prenatal environment, males
on average have higher levels of prenatal testosterone than
females (Kuijper et al., 2013). Levels of prenatal testoster-
one start rising around week 8, and the surge finishes
around week 24 (Hines, 2005). This prenatal surge is nec-
essary for sexual differentiation of the male gonads. A

Danish population-based epidemiological study of male
children indicated that enhanced prenatal steroidogenic
activity (across the delta-4 sex steroids from progesterone
through to testosterone, as well as cortisol) is associated
with a later diagnosis of autism (Baron-Cohen et al.,
2015). A Swedish population-based epidemiological study
showed that maternal polycystic ovary syndrome (PCOS,
which is associated with a hyperandrogenic maternal
environment) increases the odds of autism diagnosis in
both male and female offspring, especially when presented
with obesity (which indicates even more severe hyperan-
drogenemia) (Kosidou et al., 2016). These findings sug-
gest the possibility that sex steroid–associated
(downstream or upstream) mechanisms could be associat-
ed with risk mechanisms of and protective mechanisms
against autism. How this operates to affect gene expres-
sion and neurodevelopment remains to be investigated. In
animal models, sex differentiation of the brain involves
immune mediators and microglia (Lenz and McCarthy,
2015; McCarthy et al., 2015), and prenatal steroid influ-
ences microglial activation during early brain develop-
ment (Lenz et al., 2013). Neuroimaging in animal models
is a promising way to disentangle specific brain changes
reflective of the interactions amongst genetic predisposi-
tions (reflecting typical sex differentiation as well as autism
risks), prenatal hormonal environment, and neuroimmune
or other mediating processes.

Animal neuroimaging studies. There are large-
effect macroscopic and mesoscopic sex differences in
rodent neuroanatomy, exemplified by the increased size
in males in the bed nucleus of the stria terminalis
(BNST), the medial amygdala (MeA), and the medial pre-
optic area (MPOA). Structural MRI of the mouse brain
clearly reveals these differences, and also points to lesser-
known alterations in brain structure, including certain
larger cerebral and cerebellar cortices in females (Spring
et al., 2007; Corre et al., 2016). The estimated percent
differences between males and females in these areas are
consistently smaller with MRI than with histological
techniques.

To what extent do typically sexually dimorphic
brain regions and regions with large-effect on-average sex
differences appear when examining the brain outcomes in
mice modeling autism-related genetic mutations? The
hypothalamus (which contains the MPOA) is one of the
most affected brain regions, as shown in a study of 26
mouse lines related to autism (Ellegood et al., 2015), fol-
lowed closely by the BNST. In that study, patterns of
covariation of effect were also examined. This divided the
brain into three such patterns, including one encompass-
ing the BNST, hypothalamus, and amygdala—all sexually
highly different regions. There is thus preliminary evi-
dence that one brain module affected by autism-related
genes overlaps with the main sexually dimorphic network
(Ellegood et al., 2015).

The Four Core Genotype (FCG) model enables the
separation of sex differences into those originating from
sex steroids and those due to sex chromosomes. In this
model, the testes-determining gene (Sry) is removed from
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the Y chromosome and optionally reinserted onto an
autosome, thus separating gonadal sex (where presence of
Sry leads to male gonads) from XX and XY sex chromo-
some complements (De Vries et al., 2002). The FCG
mouse model has been used, for example, to determine
that juvenile social behavior is influenced by sex chromo-
somes (Cox and Rissman, 2011), as is white matter myeli-
nation (Moore et al., 2013). The use of the FCG model is
discussed elsewhere (Arnold, 2009). Corre and colleagues
(2016) used the FCG model to provide insights into the
origins of neuroanatomical sex differences. The neuroim-
aging data replicated decades of research into the organi-
zational effects of testosterone in determining sex
differences in the BNST, MeA, and MPOA. In other
words, the core module implicating brain differences in
autism from the animal model clustering approach (Elle-
good et al., 2015) may be influenced by the organizational
effects of sex steroids. Multiple other areas of the brain,
including the corpus callosum, sensorimotor cortex, and
cerebellar cortex, show clear sex chromosome origins.
Given the debate about possible overrepresentation of X
chromosome genes in autism (Baron-Cohen et al., 2011;
Pinto et al., 2014), any potential convergence of these
brain areas with autism imaging findings should be fol-
lowed up.

Sex chromosome aneuploidies (SCAs) provide fur-
ther insight into the role of the sex chromosomes in brain
development and, potentially, autism. Each of the com-
mon SCAs has a greater-than-expected autism comorbid-
ity (Bruining et al., 2009; Baron-Cohen et al., 2011). In a
recent series of studies on XO, XX, XY, and XXY mice,
Raznahan and colleagues discovered a stepwise pattern of
effect in the size of the BNST, MPOA, and MeA, with
XO<XX<XY<XXY (Raznahan et al., 2013, 2015).
Other brain regions, in particular in cerebellum, pons,
and cortex, showed the inverse. These mice, as in humans
with these chromosomal anomalies, do not have
completely normal gonadal function, so it is difficult to
separate chromosomal dosage from gonadal steroid effects.
Nevertheless, SCAs provide insights into how sex influ-
ences brain structure and function.

Lastly, there has been an upsurge of interest in the
role of the immune system in creating sex differences in
the brain (Papenfuss and Whitacre, 2009; Schwarz and
Bilbo, 2012; Lenz and McCarthy, 2015; McCarthy et al.,
2015) and playing a role in autism (Ashwood et al., 2011;
Eloi Akintude et al., 2013). A surprising and fascinating
result from a combined mouse brain imaging and behav-
ior study showed that the loss of functional T-cells
(through the removal of the beta and gamma chains on
the T-cell receptor) significantly altered sexual dimor-
phisms in brain structure and behavior (Rilett et al.,
2015). Given the role of immune cells (and not just
microglia) in determining sex-dependent behavioral out-
comes (Sorge et al., 2015), this clearly is a scientific direc-
tion that warrants following closely in the future.

Normative sex/gender differences revealed by
human neuroimaging studies. Neuroimaging studies
investigating human brain development have found

differences in developmental trajectories between males
and females. Although brain size at birth does not differ,
brain growth rates between birth and postnatal day 90
indicate nonlinear and region-specific expansions of the
infant brain, with male brains growing faster than female
brains (Holland et al., 2014). Later in development, males
show consistently larger brain volumes than females (Rui-
grok et al., 2014); however, these differences may be due
to sex differences in body size (Peters, 1991; Peters et al.,
1998). In humans, some but not all of these later sex dif-
ferences in regional brain size are predicted in the same
direction by variation in fetal testosterone exposure dur-
ing midgestational fetal development, suggesting that
there are early (fetal) organizational effects of testosterone
on brain regions that later exhibit sex differences (Lom-
bardo et al., 2012). It is also worth noting that pubertal
hormonal processes may have additional activational and
organizational impacts altering brain developmental tra-
jectories (Sisk and Zehr, 2005; Schulz et al., 2009; Beren-
baum and Beltz, 2011). The onset of puberty starts earlier
in females than in males on average (Marshall and Tanner,
1969, 1970; Dorn et al., 2006; Susman et al., 2010). Peak
gray matter volumes are on average measured earlier in
females than in males (Giedd et al., 1999; Raznahan et al.,
2014; Wierenga et al., 2014a). These differences in vol-
ume may be due to increases in cortical surface area rather
than cortical thickness (Wierenga et al., 2014b). Pubertal
stage also influences the developmental trajectory of sub-
cortical structures differently in males and females (Godd-
ings et al., 2014). In addition, sex/gender differences are
found in white matter tract development during the
pubertal period (Herting et al., 2012; Simmonds et al.,
2014).

On-average typical sex/gender differences have also
been reported in functional activation for tasks involving
empathy (Schulte-Ruther et al., 2008), emotion (Sacher
et al., 2013), language (Gauthier et al., 2009; Bitan et al.,
2010), and visuospatial processing (Weiss et al., 2003;
Hugdahl et al., 2006). More recently, studies have
revealed sex/gender differences in intrinsic properties of
the brain such as regional homogeneity (Dai et al., 2012),
voxel-mirrored homotopic connectivity (Zuo et al.,
2010), and local functional connectivity density (Tomasi
and Volkow, 2012), amongst other characteristics of the
intrinsic functional organization of the brain (Biswal
et al., 2010; Tian et al., 2011; Wang et al., 2012; Sat-
terthwaite et al., 2015).

Human neuroimaging studies informing risk
mechanisms. As reviewed above, there exist on-
average sex/gender differences (McCarthy, 2016) but not
necessarily sexual dimorphism (McCarthy et al., 2012) in
the human brain, for example, in terms of structural fea-
tures (Giedd et al., 2012; Ingalhalikar et al., 2014; Rui-
grok et al., 2014; Joel et al., 2015; Chekroud et al., 2016)
and gene expression across development (Shi et al., 2016).
Normative sex/gender differences found in the brain are
likely partly transient and partly persistent, partly context
dependent and partly context independent; and impor-
tantly, there is high regional specificity in terms of
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mechanisms leading to “masculinization” vs.
“feminization” (Joel and McCarthy, 2016). Assuming that
human brain sex/gender differences are the product of
both biological sex differentiation and gender socializa-
tion, and autism-related brain changes similarly are the
product of autism risk mechanisms (that act against and
overcome protective mechanisms), any above-chance
commonality between human brain sex/gender differ-
ences and autism-related brain changes may reflect the
fact that mechanisms contributing to normative sex/gen-
der differences overlap partly with the etiologies of
autism.

In search of risk mechanisms, there are two theoretical
predictions linking on-average normative sex/gender differ-
ences to autism—namely, the “extreme-male-brain”
(EMB) (Baron-Cohen, 2002) vs. the “gender-incoherence”
(GI) (Bejerot et al., 2012) hypotheses. The EMB hypothesis
stems from the findings that in specific cognitive and behav-
ioral domains typically showing on-average male–female
performance differences—namely, empathy and systemizing
(i.e., the drive to analyze or construct systems)—individuals
with autism (irrespective of sex/gender) tend to show a per-
formance pattern shifted towards or beyond the typical male
range (Baron-Cohen, 2002, 2005). The GI hypothesis stems
from findings in anthropometry and endocrinology that on
a normative male–female dimension, adult females with
autism tend to shift away from the typical female range
towards the typical male range, whereas adult males with
autism tend to shift towards the typical female range (Bejerot
et al., 2012). Both hypotheses, descriptively, would predict
that autism-related brain changes in females are partly associ-
ated with neural masculinization, whereas the autism-related
brain changes in males are predicted to be partly feminized
by the GI hypothesis but “hypermasculinized” by the EMB
hypothesis (Lai et al., 2013b). At the etiological and mecha-
nistic levels it is, however, unclear if the EMB and GI
hypotheses are mutually exclusive or simply that the under-
lying mechanisms have different effects in the two sexes/
genders. For example, it has been argued that a hypermascu-
linized brain may not be the expected outcome of increased
sex steroid action (McCarthy et al., 2015).

So far, two published studies have been particularly
informative. Lai and colleagues (2013b) used whole-brain
voxel-based morphometry to test the spatial overlap
between normative sex/gender differences in regional
brain volume and autism-related regional brain volume
changes in adult males and females, respectively. They
found that in both gray and white matter, the overall pat-
tern of autism-related brain changes in females strongly
and significantly resemble neural masculinization, whereas
those in males show a weaker but still significant level of
resemblance to feminization. Alaerts and colleagues
(2016) performed resting-state functional connectivity
analyses across the whole brain and showed that in the
context of normative sex/gender differences in functional
connectivity (i.e., higher overall connectivity in males
than in females), females with autism tend to show a pat-
tern of hyperconnectivity resembling a shift towards the
level seen in typical males (i.e., masculinization), whereas

males with autism tend to show a pattern of hypoconnec-
tivity resembling a shift towards that of typical females
(i.e., feminization). Both studies, though using different
imaging modalities and testing individuals in different
ages, converge to show that at the whole-brain level, females
with autism seem to present an overall pattern of neural
masculinization and males with autism likely show neural
feminization, fitting the descriptive predictions from the
GI hypothesis.

Whether this holds at a more local level remains
unclear. For example, Ypma and colleagues (2016) specifi-
cally examined intra-default mode network resting-state
functional connectivity and found that both males and
females with autism showed hypoconnectivity compared
with neurotypical males and females, in the context that
neurotypical males showed lower connectivity than neuro-
typical females. This may be interpreted as reflecting mas-
culinization in females with autism, but it does not support
feminization in males with autism. Similarly, Di and Biswal
(2016b), using source-based morphometry, found that in
the only gray matter volume source (involving bilateral
inferior and middle temporal regions) that showed signifi-
cant main effects of both diagnosis (autism> control) and
sex/gender (male> female), group difference patterns fit
with the descriptive predictions of the EMB hypothesis. In
a nutshell, neural masculinization in females with autism has
been rather consistently found across global and local levels,
whereas findings regarding males with autism tend to vary.
More studies are required to delineate regional brain char-
acteristics in relation to EMB, GI, or other hypotheses, and
to identify how local findings correspond with overall pat-
terns at the whole-brain level, as well as physical, cogni-
tive/psychological, and other biological levels.

Are there possible biological correlates of neural
masculinization in females with autism? Studies examin-
ing hormonal regulation in females with autism may speak
partly to this. Serum levels of testosterone, luteinizing
hormone, and androstenedione have been found to be
elevated in women with autism (Ruta et al., 2011;
Schwarz et al., 2011). Women with autism also report a
higher frequency of sex steroid hormone–associated con-
ditions than women without autism, such as irregular
menstrual cycles, dysmenorrhea, menorrhagia, delayed or
early-onset puberty, hirsutism, or a diagnosis of PCOS
(Ingudomnukul et al., 2007; Pohl et al., 2014). In a
population-based registry study, females with autistic dis-
order showed increased incidence of histologically con-
firmed ovarian cancer, although the absolute number of
incident cases was low (Chiang et al., 2015). In two sepa-
rate studies on age of menarche, women with autism
reported experiencing menarche later than women with-
out autism (Knickmeyer et al., 2006), and heightened lev-
el of autistic traits at 2 years of age is associated with later
menarche in a typical birth cohort (Whitehouse et al.,
2011). However, menarche occurs towards the end of
pubertal development (Marshall and Tanner, 1969), and
the onset can be influenced by body mass index and stress.
Nevertheless, all the reports above suggest that females
with autism are more prone to experience physical (and
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potentially mental) challenges associated with sex hormone
regulation. For individuals with autism, steroid hormones
during puberty may influence the brain at a different stage
of development (i.e., reorganizational), potentially interact-
ing differently with early or prenatal (i.e., organizational)
neurodevelopment compared with that seen in neurotypi-
cal individuals (Picci and Scherf, 2015).

All these findings provide potential insights into spe-
cific etiological and developmental hypotheses of autism.
Beyond the substantial evidence showing that neural rep-
resentation of risk processes to autism may be qualitatively
different by sex/gender (as reviewed in Direction 1), it is
likely that this difference is partly underpinned by mecha-
nisms associated with sex differentiation and/or gender
socialization. However, findings so far are cross-sectional
and derived from school-age children, adolescents, and
adults, so it is difficult to clarify whether such sex/gender-
differential neural masculinization/feminization is a prod-
uct of biological sex differentiation mechanisms or experi-
ential gender-related socialization processes, or both. To
delineate these, we need to adopt similar research designs
and hypothesis testing in early development, even before
the onset of the full behavioral syndrome of autism.

Human neuroimaging studies informing pro-
tective mechanisms. The search for protective mech-
anisms needs to be based on studying individuals at high
risk but who do not go on to develop autism. A substan-
tial proportion of autism risk runs in common genetic
variants that exist widely in the general population (Gau-
gler et al., 2014). Various types of inherited and de novo
genetic risks of autism occur in the general population as
well (Robinson et al., 2016). One approach, therefore, is
to explore candidate protective mechanisms from known
sex/gender differences in the general population. For
example, male-biased brain gene expression is enriched
with genes involved in neurodevelopmental, neurologi-
cal, and psychiatric disorders, whereas female-biased brain
gene expression does not show such a pattern (Shi et al.,
2016). This indicates that the female protective effect of
autism may be partly underpinned by female-differentially
expressed genes in the brain. Structural brain sex/gender
differences may also provide clues (Giedd et al., 2012;
Ingalhalikar et al., 2014; Ruigrok et al., 2014; Joel et al.,
2015; Chekroud et al., 2016). However, to qualify as a
candidate characteristic involved in the protective mecha-
nisms against autism, it has to present early in develop-
ment, before the onset of early signs and/or a full
syndrome of autism. The literature to date on normative
brain sex/gender differences does not include large enough
data on this early developmental period. Therefore, it can-
not provide unequivocal or conclusive implications on
how female protection presents itself in the brain early in
development. Population-based pregnancy or birth cohort
studies with a focus on the brain will be the “holy grail” to
uncover the brain basis of female protection against autism.

Despite a lack of data early in development, the rela-
tionship between normative sex/gender differences and
brain characteristics in autism does provide clues. For
example, there are findings showing that in the general

population, domains of autistic traits and cognitive fea-
tures are more correlated in males but less correlated in
females; based on this, it may be that females are more
resilient to developing autism due to an underlying more
fractionable neurocognitive architecture (i.e., having more
redundancy in the presence of risk processes) (Lai et al.,
2015). The brain structural bases for this might include
heightened interhemispheric connectivity in females than
males (Ingalhalikar et al., 2014), but there has not been
direct evidence to link the causal chain.

In another example, studies have described on-
average neurocognitive sex/gender differences in aspects
of social cognition and social perception, including pro-
cesses underlying empathy (Christov-Moore et al., 2014)
or more specifically in constructs such as biological
motion processing (Anderson et al., 2013). As individuals
with autism are impaired in aspects of social cognition
(such as cognitive empathy, also known as “theory of
mind” or “mentalizing”) and social perception (such as
biological motion perception) (Pelphrey et al., 2011), the
female advantage in the general population in these
domains has been assumed to be part of the female-
protective mechanisms of autism. The main difficulty in
confirming such an inference is that most studies on social
cognition and perception are based on findings from chil-
dren and adults, long after the age of onset of autism, and
therefore it is difficult to argue the protective role in eti-
ology and early development. Furthermore, it is difficult
to tease apart the role of gender socialization that may
already be in place early in life (i.e., nurture effects) vs.
biological sex differentiation (i.e., nature effects) and to
delineate which plays a protective or instead a moderating
role on how one presents social characteristics.
Population-based pregnancy or birth cohort studies with
a focus on early brain function and subsequent cognitive
characteristics will be the key to uncovering female-
protective mechanisms against autism.

Finally, if candidate female-protective mechanisms
are revealed from population-level sex/gender differences
in early development, we will have to confirm if they are
specifically protective against autism by examining
whether similar mechanisms operate in the presence of
evidently enhanced risk of autism. This could be revealed
from longitudinal studies focusing on early developmental
trajectories, such as infant-sibling designs (Szatmari et al.,
2016) in which heightened familial risks for autism are
present, or studies on individuals carrying known large-
effect genetic risk factors for autism (e.g., those having
autism-related genetic disorders or pathogenic/“causal”
mutations). Females who carry these enhanced risks but
who do not develop autism-related characteristics or the
full autism syndrome likely benefit from certain protective
mechanisms specific to autism (Singer, 2015).

FUTURE DIRECTIONS

Neuroimaging has the potential to bridge human popula-
tion studies and molecular neuroscience in understanding
sex/gender effects on the brain and how they relate to the
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emergence of autism. In the field of animal imaging, stud-
ies investigating sex differences in mouse mutants model-
ing autism-relevant genes and environmental exposures
are still missing. Further, as we increase our understanding
of how sex influences brain development, imaging the
timing of emergence of sex differences and how they
relate to the emergence of phenotypes in autism-related
mouse models will be key. In addition, the main effort to
date has been on imaging brain structure. Although this
should continue, investigations of function, physiology,
and quantitative MRI techniques can only increase our
conceptualization of sex/gender differences in autism.

In the field of human neuroimaging, the challenge
of nonreplication and low statistical power (Button et al.,
2013) needs to be resolved, potentially with several com-
plementary approaches. One is to increase sample size by
means of large-scale, multicenter prospective projects
(Zwaigenbaum et al., 2011; Baribeau et al., 2015; Loth
et al., 2016), or, less ideally, by data sharing and pooling
across existing datasets (Halladay et al., 2015), such as the
ABIDE initiative (Di Martino et al., 2014). Another
approach has to deal with increasing the fidelity of
acquired neuroimaging data since improvements in
signal-to-noise ratio should lead to improved estimates of
effect size and thus statistical power (Lombardo et al.,
2016a). Yet another approach, more specific to the prob-
lem of heterogeneity in autism, is to stratify the autism
population past the standard diagnostic label in a way that
improves sensitivity to honing in on neurobiological
mechanisms of interest, which may substantially differ
across the many different subtypes of “autisms” (Coleman
and Gillberg, 2012; Lai et al., 2013a; Lombardo et al.,
2015). Once such stratification is implemented, it may
then be easier to identify common and divergent findings
of sex/gender-differential neural characteristics across sub-
groups. Subgroups that used to be difficult to include in
neuroimaging studies (e.g., individuals with concurrent
communicative or intellectual disability) can now be
included, thanks to advanced data acquisition and analytic
methods, such as sleep scans (Lombardo et al., 2015),
decreased scanning time (e.g., using simultaneous multi-
slice imaging [Barth et al., 2016]), prospective motion
correction at imaging acquisition (Tisdall et al., 2012),
and biophysically and statistically principled denoising
techniques that leverage echo-time dependence in multi-
echo acquisitions (Kundu et al., 2012, 2013; Lombardo
et al., 2016a). In either approach, to adequately address
research questions about sex/gender and autism, it is
important to include equal numbers of males and females
in the study (Lai et al., 2015; Joel and McCarthy, 2016).

Another challenge is to further disentangle the rela-
tionship between sex/gender, autism, and other key fac-
tors contributing to the phenotypic heterogeneity of
autism, such as intellectual and language capabilities,
comorbidity pattern, age, and developmental trajectory.
As autism is highly associated with co-occurring
psychiatric, medical, and neurodevelopmental conditions
(Gillberg, 2010; Lai et al., 2014), as a general principle, a
less confounded examination of sex/gender differences in

autism relies on having comparable distributions of com-
mon co-occurring conditions (or level of symptoms,
traits, or abilities) across the male and female autism
groups. Substantial variance in these distributions further
provides opportunity to reveal how sex/gender interacts
with co-occurring conditions when it comes to the asso-
ciation with neuroimaging measures (or other variables of
interest). For example, females with autism have been
found to be more likely to have concurrent intellectual
disabilities and neurological conditions than their male
counterparts (Bolton et al., 2011; Frazier et al., 2014).
The generalizability of these clinical findings, however,
can be challenged by potential nosological dilemma and
diagnostic/ascertainment bias (Lai et al., 2015). Impor-
tantly, linking available sex/gender-differential neuroim-
aging findings to this phenotypic/clinical sex/gender
difference is problematic as the former comes mainly
from samples without significant intellectual or neurologi-
cal disabilities. To move forward, for example, in under-
standing the role of intelligence, we need to test for sex/
gender-differential characteristics across individuals with a
wide range of (different subdomains of) intellectual abili-
ties, by means of stratification by categorical IQ ranges
and modeling different effects of IQ. This approach may
uncover the relationships amongst sex/gender, autism,
and neurophenotypic heterogeneity in an incremental
manner.

In terms of an overarching research design, what is
missing are longitudinal neuroimaging studies starting
from early development, not only in individuals who later
develop autism but also in those who carry heightened
risks but who do not show atypical neurodevelopment or
go on to develop autism. These will be key to revealing
the developmental trajectories of sex/gender-differential
neural characteristics of autism, to delineate different roles
of sex vs. gender, and to clarify risk vs. protective mecha-
nisms at play.

A further challenge is to link up the causal chain.
Animal imaging studies take a bottom-up approach to
identify common downstream effects of high-effect-size
causal factors. It is uncertain how the findings can be gen-
eralized to humans, since highly penetrant genetic muta-
tions and nongenetic (e.g., environment-related) risks
only explain about half of the total liability to autism
(Gaugler et al., 2014). Nevertheless, the hope lies in the
findings that the heterogeneous genetic and environmen-
tal risks contributing to autism converge on key down-
stream pathophysiological mechanisms, including protein
synthesis, transcriptional and epigenetic regulation (e.g.,
chromatin modification), synaptic development and sig-
naling, and microglial and neuroimmune regulation
(Geschwind and State, 2015; Sahin and Sur, 2015; Sand-
ers, 2015; Lombardo et al., 2016b,c). Therefore, conver-
gent animal imaging findings (Ellegood et al., 2015) may
provide meso- and macroscopic-level brain markers cor-
responding to the converging molecular-level mecha-
nisms. In the same vein, future human neuroimaging
studies need to gather candidate (genetic and environ-
mental) etiological information at an individual level to
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facilitate causal investigation. A genetics-first approach,
such as the Simons Variation in Individuals Project, which
explores multilevel consequences of recurrent genetic var-
iants that increase liability to autism (and other atypical
neurodevelopmental conditions) such as deletion or
duplication of chromosomal segment 16p11.2 (Simons
VIP Consortium, 2012), is a useful initial step echoing
the parallel animal imaging approach (Qureshi et al.,
2014; Chang et al., 2016). Broadening this approach to
study sex/gender-associated risk and protective mecha-
nisms of autism requires sex/gender-normed quantifica-
tion of atypical neurobiology and the multiple candidate
etiological factors, and then the comparison of “brain-
etiological factor” association patterns across sexes/gen-
ders will inform how sex/gender moderates the “neural
routes to autism.”

In the process linking up the causal chain, on the
one hand we need to examine whether brain findings can
be reasonably interpreted as caused by the interaction of
candidate etiological factors and moderators, in the light
of sex/gender differences. On the other hand, we need to
test whether the brain findings can reasonably account for
cognitive and behavioral characteristics of autism, again in
the light of sex/gender differences. These require com-
plex modeling, and there is a risk of making interpreta-
tions based on spurious correlations. For example, simply
testing the correlation between measures in the brain
showing sex/gender differences in autism and behavioral
measures also showing sex/gender differences in autism
risks finding spurious correlations that are difficult to
interpret. As a general principle, testing relationships
between etiologies, brain, cognition, and behavior strati-
fied by sex or gender, then testing whether sex or gender
moderates the relationships, is a clear first approach to dis-
entangle the complexity (Bedford et al., 2016).

Uncovering the relationship between sex/gender
and autism is a journey mapping risk and protective fac-
tors in human development. This applies not only to
autism but also other atypical neurodevelopmental condi-
tions that have a sex/gender-biased prevalence (Rutter
et al., 2003; Zahn-Waxler et al., 2008) and potentially
share similar risk and protective mechanisms (Cross-Dis-
order Group of the Psychiatric Genomics Consortium,
2013; Jacquemont et al., 2014; Taylor et al., 2016). A
transdiagnostic approach (Baribeau et al., 2015; Ameis
et al., 2016; McGrath et al., 2016; Sonuga-Barke et al.,
2016) that further includes an angle focusing on sex/gen-
der will be particularly illuminating. If we discover what
protects females, we may better understand how to foster
resiliency.
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