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ABSTRACT
BACKGROUND: Females and males differ significantly in the prevalence and presentation of autism spectrum
conditions. One theory of this effect postulates that autistic traits lie on a sex-related continuum in the general
population, and autism represents the extreme male end of this spectrum. This theory predicts that any feature of
autism in males should 1) be present in autistic females, 2) differentiate between the sexes in the typical population,
and 3) correlate with autistic traits. We tested these three predictions for default mode network (DMN)
hypoconnectivity during the resting state, one of the most robustly found neurobiological differences in autism.
METHODS: We analyzed a primary dataset of adolescents (N 5 121, 12–18 years of age) containing a relatively large
number of females and a replication multisite dataset including children, adolescents, and adults (N 5 980, 6–58
years of age). We quantified the average connectivity between DMN regions and tested for group differences and
correlation with behavioral performance using robust regression.
RESULTS: We found significant differences in DMN intraconnectivity between female controls and females with
autism (p 5 .001 in the primary dataset; p 5 .009 in the replication dataset), and between female controls and male
controls (p 5 .036 in the primary dataset; p 5 .002 in the replication dataset). We also found a significant correlation
between DMN intraconnectivity and performance on a mentalizing task (p 5 .001) in the primary dataset.
CONCLUSIONS: Collectively, these findings provide the first evidence for DMN hypoconnectivity as a behaviorally relevant
neuroimaging phenotype of the sex-related spectrum of autistic traits, of which autism represents the extreme case.
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The strikingly high male to female prevalence ratio is one of
the most obvious and robust characteristics of autism spec-
trum conditions (ASCs) (1–3). While it is not known whether
this bias reflects differential rates of diagnosis or genuine sex
differences in prevalence (4,5), the link between autism and the
male sex is common in pervasive public stereotypes and
originates with the first descriptions of these conditions.
Asperger, having never encountered a female patient, infor-
mally described his eponymous syndrome as an “extreme
variant of male intelligence” (6). A later formulation of this ori-
ginal observation noted population-level differences between
the sexes in systemizing (i.e., a tendency to think mechanis-
tically and logically, to perceive patterns and systems) and
empathizing (i.e., the ability to identify and affectively share the
emotional states of others), which are respectively stronger
and weaker in patients with ASCs (7,8). Males typically
show an attenuated version of the same trend (i.e., greater
systemizing and lower empathizing), and therefore these
observations have led to the hypothesis that autistic traits
exist on a continuum in the typical population [a prediction
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borne out by genetic studies (9)] and that ASCs represent an
extreme form of the typical male brain (7,8,10,11).

The neurobiological underpinnings of this framework have
received little attention. Most neuroimaging studies have
focused on identifying neurobiological features of autism,
usually in predominantly male populations. The parsimonious
prediction generated by the framework is that such neuro-
biological differences in ASCs would further reflect the
“extreme” position of these individuals on the spectrum on
which typical males and females differ. More specifically, a
robust neurobiological feature of autism in males would 1) be
similarly present in females with ASC, 2) show sex-specific
differences in the typically developing population, and 3)
correlate with autistic behavioral traits. However, these pre-
dictions have not been tested.

Rather than examining brain areas in isolation, much autism
research has focused on functional connectivity patterns
between brain regions (12). Functional connectivity is defined
as the statistical association between pairs of brain regions,
and may be inferred across a range of spatial and temporal
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scales, with a variety of measures. In the present article, we
focus on the most common operationalization of this concept
in human neuroimaging: the computation of functional mag-
netic resonance imaging (fMRI) connectivity using Pearson
correlation (13). The default mode network (DMN) has been of
particular interest in people with ASCs because of its putative
role in mentalizing and social cognition (14–18). This network,
a group of brain regions that reduce their activity during
cognitive processing, fails to deactivate in people with ASCs
(19–21). Altered functional connectivity between DMN regions
at rest (22–29) and during tasks (30) is among the most
commonly reported functional connectivity findings in people
with ASCs. Differences in functional connectivity within this
network have been found across a range of methods, includ-
ing independent component analysis (22,24), region of interest
or seed-based analyses (23,26–29), and graph-theoretical
analyses (25,30). In addition, these differences correlate with
core ASC symptoms (22,23,27,28) and constitute an endo-
phenotype (21,30)—a genetically mediated biomarker (31) that
distinguishes biological relatives of people with ASC from
other members of the population. However, the current
literature on sex differences in DMN connectivity is sparse
and inconsistent (32–34). Alteration of DMN connectivity
therefore represents a natural target for investigation of the
hypothesized sex-related spectrum of autistic traits.

We leveraged a primary dataset with a relatively large
number of females with ASC, female siblings of individuals
with ASC, and a replication multisite dataset to robustly test
the predictions made by this framework. All participants were
scanned during resting state—that is, a condition of lying
still and quietly, unengaged in cognitive tasks. We specifically
tested whether weaker functional connectivity between
regions of the DMN 1) is a feature and endophenotype for
autism in females, as has previously been shown in males with
autism, 2) is present in males relative to females in the typically
developing population, and 3) correlates with decreased
mentalizing ability, typically affected in autism. We also tested
the specificity of DMN hypoconnectivity by leveraging a
positive control dataset of participants with a distinct psychi-
atric condition, major depressive disorder.
METHODS AND MATERIALS

Primary Dataset: The Cambridge Family Study of
Autism

The Cambridge Family Study of Autism (CFSA) comprises
resting-state and task scans from control females (n = 20),
control males (n = 20), females with ASC (n = 16), males with
ASC (n = 35), and nonaffected female (n = 30) and male (n = 13)
siblings of subjects with ASC (21,30,35–39). We used only the
resting state scans from this sample for analysis. All participants
were 12 to 18 years of age, had no history of psychotropic drug
use, and had no other documented psychiatric conditions.
Diagnostic status of people with ASCs was confirmed with the
Autism Diagnostic Observation Schedule–Generic and Autism
Diagnostic Interview-Revised assessments, which are gold
standard tools in autism diagnosis (40,41) (see Supplement for
full demographic details of all participants).
Biological Psychiatry: Cognitive Neuroscience and
Replication Dataset: ABIDE

To test the reproducibility of findings from the CFSA data,
we analyzed resting-state scans from 408 males with ASC,
428 control males, 55 females with ASC, and 89 control
females obtained from the Autism Brain Imaging Data
Exchange (ABIDE) (42). These data were collected from 15
imaging sites, and participants spanned a wide age range
(6–58 years of age). However, 456 (47%) participants were in
the same age range (12–18 years of age) as the CFSA
participants. This replication dataset offers a considerable
increase in statistical power at the expense of a more
heterogeneous population. We discuss our control for this
heterogeneity below.

Positive Control Dataset: Magnetic Resonance
Imaging for Myocardial Perfusion Assessment in
Coronary Artery Disease Trial (MR-IMPACT) Study of
Depression

To test the specificity of our findings, we analyzed a positive
control dataset of a distinct psychiatric disorder, major
depression. We obtained data from the MR-IMPACT study
of depression, which comprised resting-state scans from
adolescent male (n 5 6) and female (n 5 18) controls, and
adolescent male (n 5 17) and female (n 5 46) patients with
moderate to severe major depressive disorder (43) but other-
wise typical development (44).

Preprocessing

fMRI scanning parameters for the primary and replication
dataset are provided in the Supplement. A preprocessing
pipeline using AFNI (45) and FMRIB Software Library (46)
was applied to all scans. The pipeline included removal of
the first five scans of each functional echo planar imaging
series, skull-stripping, brain segmentation, nonlinear regis-
tration to Montreal Neurological Institute space, and core-
gistration of anatomic images to realigned and slice-time
corrected functional scans. Motion parameters and mean
signal from trimmed binary masks (partial volume estimates
.0.99) of cerebrospinal fluid and white matter, their deriva-
tives and quadratic terms, were regressed out as confounds,
resulting in a total of 32 regressors (47,48); we did not
perform global signal regression (49). Each participant’s time
series were despiked, band-pass filtered in the range of 0.01
to 0.1 Hz, denoised by removal of the 32 regressors (i.e.,
band-pass filtered in the same range), and smoothed with an
8-mm full width at half maximum Gaussian kernel, all using
the AFNI 3dBandpass command (https://afni.nimh.nih.gov/
pub/dist/doc/program_help/3dBandpass.html). Movement is
an issue of high concern in analyses of functional connec-
tivity (50–53), and we provide details of our pipeline and an
analysis of the effect of motion on our results in the
Supplement.

The DMN was defined as 58 8-mm-radius spherical regions
of interest derived from a meta-analysis of fMRI studies
(Supplement) (54). To remove weak and spurious correlations,
we analyzed binary networks obtained by thresholding the
matrices and preserving only the strongest 20% of connection
weights for each participant.
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Statistical Analysis

We computed functional DMN intraconnectivity as the density
of all binary intra-DMN edges minus a constant number of
such edges expected in a random network (0.2 for a 20%
density; see Supplement for additional discussion). We
defined functional connectivity using Pearson’s correlation
and subtracted the constant to increase interpretability and
decrease dependence of the measure on the chosen binariz-
ing threshold. In the primary dataset, we tested for a difference
between control females and 1) females with ASC, 2) sisters of
subjects with ASC, 3) control males, and 4) males with ASC,
and between control males and males with ASC, using multi-
ple regression controlling for effects of age and IQ. We
conducted the same tests in the replication dataset (with the
exception of the sibling contrast) but included an additional
regressor of study site (thereby correcting for age, IQ, and
study site). The residuals of the test on the replication dataset
failed a Shapiro-Wilk test for normality (p 5 .03), so we used
robust regression for all analyses in this study, although
results were similar with standard least squares regression.
Robust regression, in comparison to standard regression, is
less affected by violations of normality and by the potential
presence of outliers (55).

We quantified the final effect sizes by pooling all available
data from the primary and replication datasets and performing
a multiple regression analysis, correcting for age, IQ, and
study site. We quantified differences in connectivity between
groups as a percentage change of mean DMN intraconnec-
tivity relative to a baseline of control males (Supplement). We
tested the specificity of observed effects by repeating the
multiple regression analysis on all data including the positive
control dataset, specifically testing for an effect of depression
diagnosis. We repeated this test separately for both sexes.
Finally, we explicitly investigated the effect of age, repeating
the analysis on the pooled data of the primary and replication
datasets stratified by age group: children (6–11 years of age),
adolescents (12–18 years of age), and adults (.18 years
of age).

Robustness Analyses

We conducted a number of robustness analyses, including the
additional preprocessing step of scrubbing, exclusion of high-
moving subjects, regressing out motion parameters, using a
threshold-independent quantification of intranetwork connec-
tivity, and excluding three sites in the ABIDE dataset asso-
ciated with previous studies of DMN connectivity (to exclude a
possible circular argument). We also further explored the
impact of motion. See the Supplement for full details on these
analyses.

Behavioral Analysis

Data were collected for all CFSA participants on performance
on the “Reading the Mind in the Eyes” mentalizing task (38,56).
This task, performed during fMRI recording, is a popular test of
mentalizing and emotion recognition: presented with just a pair
of eyes, participants were required to choose one of two
words to describe the expression of the eyes and the
congruent mental state. Although we do not have direct
366 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
measures of systemizing or empathizing, this task is related
to mentalizing and the empathizing construct. In a control,
nonmentalizing condition, participants simply judged whether
the eyes belonged to a male or female. Previously, we found
performance on this mentalizing task to be related to diag-
nosis; subjects with autism performed worse than controls
(38). We examined whether DMN intraconnectivity correlated
with the percentage of incorrect responses in the mentalizing
and the control condition beyond this diagnosis effect by
regressing out the effects of age, IQ, and the six groups (i.e.,
ASC, sibling, and control groups split by sex). We also
performed this analysis separately for the two sexes and three
groups.
RESULTS

DMN hypoconnectivity was previously shown to characterize
autism in male-only or heavily male-biased studies (22–30) and
to appear as an endophenotype in male siblings (30). Here,
controlling for heterogeneity in age and IQ, we found that DMN
hypoconnectivity is likewise robustly present in females with
ASC (primary dataset p 5 .001; replication dataset p 5 .009;
Figure 1A, C). We further found that it represents an endo-
phenotype, with unaffected female siblings of individuals with
ASC placed between typically developing and autistic partic-
ipants, and having significantly lower connectivity than the
former (p 5 .035). The endophenotype analysis of the females
complements our previous report of an endophenotype for the
male-only subset of this dataset in a previous study (30). In
addition, consistent with the hypothesized difference in autis-
tic traits between typical males and females, DMN intra-
connectivity was lower in control males than control females
(primary dataset p 5 .036; replication dataset p 5 .002;
Figure 1B, D).

We quantified the effect sizes for the four groups by pooling
the primary and replication datasets (Figure 2A). The mean
connectivity for control females was 27% higher than the
mean value for control males, while the mean for males with
ASC was 16% lower. Females with ASC were intermediate
between males with ASC and control males, with a mean 9%
lower than the latter (not statistically significantly different from
either group, p . .1).

Our pooled data covered a substantial age range (6.5–58
years of age). Although DMN intraconnectivity appears varia-
ble across the lifespan (Figure 2B), the contrasts we identified
were present to some extent in all three age groups. We
replicated all three testable comparisons, control females
versus females with ASC, control females versus control
males, and control males versus males with ASC for children
(effect size [p value]: 0.08 [.009], 0.06 [.01], and 0.04 [.02]) and
adolescents (0.06 [.02], 0.05 [.002], and 0.03 [.004]). For adults,
effect sizes were reduced and differences were trend level or
nonsignificant (0.08 [.1], 0.02 [.5], and 0.03 [.1]). See the
Supplement for details of this analysis. We could not evaluate
the endophenotype effect in the replication dataset because it
did not contain siblings.

We found no significant default mode connectivity effect in
a positive control dataset of participants (n 5 63) diagnosed
with a distinct psychiatric condition, major depressive disorder
uly 2016; 1:364–371 www.sobp.org/BPCNNI
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Figure 1. Predictions for default mode network
(DMN) connectivity in a sex-related autistic trait
spectrum. Group differences in DMN intracon-
nectivity for (A) 66 and (B) 75 participants from
the primary dataset (20 female controls present
twice) and (C) 144 and (D) 925 participants from
the replication dataset (89 female controls present
twice). (E, F) Relationships between DMN intra-
connectivity and performance on a mentalizing
task, Spearman rho is given. All data are shown in
(E) and split by sex in (F). Box plots give quartiles
and asterisks reflect significant differences (*p ,

.05, **p , .01, and ***p , .001). ASC, autism
spectrum condition; Con, controls; F, females;
M, males; Sib, siblings.
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(p . .1; Figure 2C). The effect remained absent when allowing
for a sex by diagnosis interaction (see Supplement).

Behavioral data are available from the CFSA sample only.
The observed differences in DMN connectivity were signifi-
cantly associated with performance on the “Reading the Mind
in the Eyes” task (56), a task known to reveal mentalizing
impairments in people with autism (Figure 1E, F). A higher
percentage of errors on this task was associated with lower
DMN intraconnectivity in the whole sample of males and
females with ASC, siblings, and controls (p 5 .001) beyond
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the effects of diagnosis, age, and IQ. The same effect was
separately found in the female (p 5 .034) and male (p 5 .016)
groups. A negative effect was also found when analyzing each
of the three groups separately (i.e., ASC, siblings, and con-
trols), but only significantly so for the ASC group (p 5 .008;
see the Supplement for the full results). In addition, there was
no relationship between DMN intraconnectivity and percent-
age errors in a control task of gender judgment (p . .1), and
performance on neither task correlated with movement (see
Supplement).
Figure 2. Default mode network (DMN) intra-
connectivity distributions derived from pooling the
primary and replication datasets. The effects of
age, IQ, and site have been regressed out. (A) The
distribution of DMN intraconnectivity for the 4
groups (top) and the 4 groups and positive control
participants with major depressive disorder (bot-
tom). The latter category does not differ from the
control subjects. The panel shows both a clear
difference between the mean values of the groups
and large within-group heterogeneities. (B) The
effect of age on these values. The lines for
females are more volatile because of lower num-
bers, especially for adult ages. ASC, autism
spectrum condition; Con, control; Depr, depres-
sion; F, female; M, male.

40 60
age
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DISCUSSION

To our knowledge, this is the first investigation of functional
connectivity in the DMN as a neurobiological correlate of the
sex-related spectrum of autistic traits. We used two independ-
ently acquired datasets to test three specific predictions. First,
we showed a robust and specific reduction in DMN intra-
connectivity in females with ASC and in unaffected female
siblings of subjects with ASC, replicating previous results in
males (30). Second, we found that control females had an
increased DMN intraconnectivity compared to control males,
and that people with ASC tended to have lower intraconnec-
tivity still. Third, and in line with these findings, we found that
DMN intraconnectivity correlated with performance in a
behaviorally relevant mentalizing task that typically reveals
deficits in autism. These findings bring together two strands of
research in the autism literature, suggesting that abnormal
DMN connectivity may underlie the spectrum of autistic traits
that extends into the general population. Reduced DMN
intraconnectivity is consistently found across males and
females on the spectrum, and indeed differs in typically
developing males and females, and we suggest that it may
be highly relevant to the autistic phenotype and autistic traits
that appear to a greater extent in males.

The idea that ASCs resemble an exaggerated manifestation
of typical sexual dimorphism was originally linked to the
expression of systemizing and empathizing (7,8), psycholog-
ical processes linked respectively to strengths and weak-
nesses in autism. To a lesser extent than people with
autism, typically developed males also tend to show strengths
in the former and weaknesses in the latter; consequently,
people with autism were said to show a form of the “extreme
male brain” (7,8). This theory was extended in later years after
a tentative relationship was found between empathizing,
systemizing, autistic traits, and prenatal androgen exposure
(10,11), which is believed to permanently modify brain struc-
ture (57,58). Although we cannot comment on this aspect of
the male brain hypothesis, we add to this original theory by
revealing that the most robust difference in functional con-
nectivity in ASC is expressed on the same sex-related
spectrum.

Many studies suggest that ASC in females is distinct at the
level of brain and behavior from ASC in males (4,59–66).
Research continues to search for differences in genetics and
for protective features that might set apart females with ASC
(4,67). There are nevertheless some brain and behavioral
commonalities between males and females with ASC
(4,59,60), and our study is to our knowledge the first functional
connectivity investigation to report that reduced DMN intra-
connectivity is shared across the sexes, with both males and
females with ASC down the more “male” end of the spectrum
(Figure 2A). This finding, consistent with behavioral results
(68), indicates that DMN connectivity may underlie some of the
shared symptomatology of autism in males and females, and
fits well with the putative role of DMN in mentalizing and social
cognition (14–18), known to be impaired in both males and
females with ASC. Further evidence of this role was given by
the correlation we observed between DMN intraconnectivity
and performance on the mentalizing task, which relies on
some of the same cognitive mechanisms as empathy (7), and
368 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
lack of correlation with performance in a condition unrelated to
mentalizing (gender judgments). It remains unknown whether
these hypotheses apply to other aspects of brain connectivity;
results from a recent study are consistent with the DMN being
unique in this regard (69).

The effects of age on functional connectivity in ASC has
been a topic of recent interest (70). DMN intraconnectivity has
been studied in children (23,71), adolescents (22,25,28,30),
and adults (27) with ASC, and in wide-ranging groups span-
ning late adolescence to adulthood (24,26,29). On the whole,
these lean toward hypoconnectivity, with the exception of
three studies that, upon greater scrutiny, report hyperconnec-
tivity between some individual nodes of the DMN (23,25,71) in
contrast to the more expansive approach we took here. This
may explain why, when studying the DMN as a larger whole,
we saw reductions in DMN intraconnectivity that were com-
mon across age groups in ASC, appearing both in a tight age-
matched group (12–18 years of age) and a larger dataset with
wide age range (6–58 years of age). Additional analyses on the
latter revealed the effects to be significant for children (6–11
years of age) and adolescents (12–18 years of age) but only at
trend level for adults (19–58 years of age). This seems
consistent with the view that ASCs are developmental con-
ditions in which neurobiological differences may be at their most
apparent in early life (72,73). There has been the suggestion of
general hyperconnectivity in early life in people with ASC (70), and
this was indeed seen between some nodes of the DMN (23,71) but
does not appear to be the case for DMN as a whole. Other studies,
finding smaller and absent effects in adulthood and adolescence,
respectively, suggest that DMN connectivity develops on a
markedly different trajectory in ASC (74,75); greater than average
variability in the rate of development in people with ASC could
explain the null findings from these studies. The current study used
a cross-sectional sample, and a longitudinal analysis in future
research may help to clarify age-related changes in the DMN.
Further research should also clarify whether effects of sex, as
defined in the extreme male brain theory, are modulated by age.

It is important to note that our results apply to group
differences and tendencies in large populations, and therefore
may not fully explain individual differences. For example, even
though people with ASC tend to fall on the (extreme) male end
of the distribution (76), this is not true of every individual. This
is well depicted in the distribution of the data in Figure 2: the
different groups show clearly different profiles, all character-
ized by a large amount of within-group heterogeneity. In line
with current views on insufficient emphasis on effect sizes (77–79),
it is important to realize that heterogeneity can mask
considerable effects. Indeed, we found an increase of 27%
(respectively a decrease of 16%) in DMN connectivity for
control females (respectively for ASD males) relative to control
male participants. These findings suggest that DMN intra-
connectivity represents an important risk factor in a multi-
factorial interplay underpinning the biological presentation of
autism.

Motion can have a profound effect on estimates of func-
tional connectivity (50–53). Nontrivial patterns of distance-
dependent alterations of functional connectivity have been
shown to be the result of motion artifacts, and many prepro-
cessing strategies, such as the one used in this study, have
been used to correct for these. Motion is particularly
uly 2016; 1:364–371 www.sobp.org/BPCNNI
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problematic for studies of autism because participants with
ASCs tend to move more in the scanner. However, our results
were robust against a range of methods aimed to reduce
motion artifacts, including the additional step of scrubbing
(see Supplement). It is noteworthy, however, that a correlation
with motion remained after these preprocessing steps. This
remaining correlation is consistent with recent findings from
Zeng et al. (80). These authors presented evidence that DMN
hypoconnectivity is a stable biological trait that predisposes to
movement rather than an artifact caused by scanner move-
ment; they found that individuals with lower DMN connectivity
tend to move more. We likewise found that DMN intracon-
nectivity correlated with motion in repeat scans for the same
subjects, even after removing the effect of motion in the
current scan (see Supplement). Importantly, we also found a
strong relationship between DMN intraconnectivity and per-
formance on a mentalizing task, providing additional, albeit
indirect, evidence for the claims of Zeng et al. that the
correlation may represent biological rather than artifactual
effects. Future research should evaluate this hypothesis in
more detail, investigating to which groups and under which
circumstances it applies.

A notable feature of our study is the inclusion of a positive
control group of patients with a distinct psychiatric disorder,
major depression. This inclusion differentiates our work from
the majority of neuroimaging autism literature, which does not
include positive control subjects. In contrast to autism, there
seems to be, on balance, greater evidence for DMN hyper-
connectivity, rather than hypoconnectivity, in adults with major
depression (81,82). Another study, reporting more complex
patterns of hyper- and hypoconnectivity within and between
DMN and other brain regions, suggests that developmental
changes with age may impact findings (83). While our adoles-
cent depression data set was comparatively small, the
absence of DMN hypoconnectivity in these data, at least,
represents some evidence for specificity of our studied con-
nectivity measure. More generally, the inclusion of positive
controls in future studies represents an important goal toward
more clinically relevant conclusions, and constitutes an impor-
tant step towards translation of this and other neuroimaging
phenotypes in ASC (84,85).

In summary, our analyses suggest that the DMN shows a
robust, heritable, specific, and behaviorally relevant reduction
across the autism spectrum. The analyses simultaneously
reconcile two distinct strands of autism research—the extreme
male brain theory of autism and default mode connectivity in
autism—into a convergent and unified picture of biological
abnormalities in autism.
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