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Abstract

Background: Atypical lateralization of language-related functions has been repeatedly found in individuals with
autism spectrum conditions (ASC). Few studies have, however, investigated deviations from typically occurring
asymmetry of other lateralized cognitive and behavioural domains. Motor deficits are among the earliest and most
prominent symptoms in individuals with ASC and precede core social and communicative symptoms.

Methods: Here, we investigate whether motor circuit connectivity is (1) atypically lateralized in children with ASC
and (2) whether this relates to core autistic symptoms and motor performance. Participants comprised 44 right-handed
high-functioning children with autism (36 males, 8 females) and 80 typically developing control children (58 males,
22 females) matched on age, sex and performance IQ. We examined lateralization of functional motor circuit connectivity
based on homotopic seeds derived from peak activations during a finger tapping paradigm. Motor performance was
assessed using the Physical and Neurological Examination for Subtle Signs (PANESS).

Results: Children with ASC showed rightward lateralization in mean motor circuit connectivity compared to typically
developing children, and this was associated with poorer performance on all three PANESS measures.

Conclusions: Our findings reveal that atypical lateralization in ASC is not restricted to language functions but is
also present in circuits subserving motor functions and may underlie motor deficits in children with ASC. Future
studies should investigate whether this is an age-invariant finding extending to adolescents and adults and whether
these asymmetries relate to atypical lateralization in the language domain.
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Background
The macroscopic functional organization of the human
brain is characterized by lateralized specialization of the
two cerebral hemispheres for cognitive and behavioural
abilities. The left hemisphere exhibits dominance for
language and motor control, whereas the right hemi-
sphere is specialized for visuospatial attention [1, 2].
This division of function has been explained as an evolu-
tionary advantage to avoid the duplication of cognitive
processing and cortical representations [3]. In line with

this, we previously showed that leftward lateralization of
functional motor circuit connectivity is associated with
better motor performance in typically developing children
[4] and others have shown that the degree of language and
visuospatial lateralization relates to enhanced cognitive
functioning [5, 6].
Studies converge to show that this typical pattern of

hemispheric specialization is not seen in individuals with
autism spectrum conditions (ASC). A consistent finding
is that language-related structures such as the planum
temporale [7] and inferior frontal gyrus [8] are atypically
rightward asymmetric in both children and adults with
ASC. These findings are corroborated by functional studies
reporting atypical lateralization on linguistic tasks in indi-
viduals with ASC [9–15]. Early development of atypical

* Correspondence: dorothea.floris@nyumc.org
1Autism Research Centre, Department of Psychiatry, University of Cambridge,
Cambridge, UK
2Department of Child and Adolescent Psychiatry, the Child Study Center,
New York University Langone Medical Center, New York, NY, USA
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Floris et al. Molecular Autism  (2016) 7:35 
DOI 10.1186/s13229-016-0096-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13229-016-0096-6&domain=pdf
mailto:dorothea.floris@nyumc.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


language lateralization might potentially serve as a bio-
marker and be clinically relevant if it precedes atypical
language development in children with ASC [16]. Language
is not the only lateralized functional domain in which indi-
viduals with ASC exhibit deficits. Clumsiness and impaired
fine motor control are among the most prevalent and earli-
est identifiable symptoms in individuals with ASC [17–19].
Imaging studies report atypical activation of the premotor
cortex [20] and the cerebellum [21–23] during motor exe-
cution and decreased connectivity of the motor execution
network [22]. However, functional studies of atypical
lateralization in ASC have mainly been confined to the
language domain. Only a few studies have explored latera-
lized activation during motor tasks in ASC during imita-
tion [24], sequence [25] or procedural learning [26].
Motor symptoms are of considerable functional and

clinical relevance in ASC, given that they are among the
earliest detectable behavioural problems, preceding social
and language deficits and have been found to be corre-
lated with core social and communicative impairments in
ASC [27, 28]. Indeed, the neural contributions to motor
skill impairments in ASC may parallel those underlying
the broader range of autistic features, leading to impaired
development of skills necessary for motor, social and com-
municative behaviours [29]. Thus, identifying the neuro-
biological underpinnings of motor signs in ASC is of
upmost importance in view of their potential role as bio-
logical markers of the condition.
Lateralized functions are subserved by functional co-

ordination among regions in a network rather than by
individual brain loci separately. Recent advances in neu-
roimaging have provided tools to measure the syn-
chronization of cortical regions that share functional
properties and thus form complex neural networks.
Coherent temporal correlations in slow, spontaneous
low-frequency fluctuations in the blood-oxygen-level-
dependent (BOLD) signal are the basis for functional
resting-state connectivity, which may reflect the intrinsic
organization of the human brain [30–32]. Recent resting-
state studies have confirmed the presence of lateralized
brain functions and have helped to elucidate differential
patterns of connectivity. Left hemisphere functions such as
language and fine motor control have been suggested to be
more focal preventing conduction delays and enabling
rapid processing [33, 34], whereas visuospatial functions
require more interhemispheric integration to represent the
bilateral visual space [35]. Consistent with this, Gotts et al.
[5] showed that functional lateralization differs between
the two hemispheres, with left-lateralized hubs including
language and motor control networks showing a bias
towards intrahemispheric interactions, whereas right-
lateralized hubs including those subserving attention
tending to operate in a more integrative manner between
the two hemispheres.

Mounting evidence suggests that the neural substrates of
ASC involve atypical neural connectivity and deficient
neural synchronization of multiple functional networks
[36–38]. Many recent studies in ASC have moved away
from task-based fMRI, instead focusing on aberrant func-
tional connectivity of networks subserving cognitive and
social functions, such as the default mode network [39–42].
To date, only a few studies have explored atypical motor
circuit connectivity in ASC in association with motor per-
formance [22, 43, 44] or atypical lateralization of resting-
state (motor) networks in ASC [45, 46]. This is despite the
accumulated evidence of autism-associated impairments in
motor control and learning [18, 28, 47–49]. Cardinale et al.
[45] reported atypical rightward lateralization of multiple
functional brain networks in individuals with ASC, includ-
ing language, motor and visuospatial circuits, concluding
that rightward lateralization constitutes a fundamental cha-
racteristic of cerebral organization in ASC.
Here, we extend the current literature on atypical cere-

bral lateralization in ASC to examine the lateralization of
functional motor circuit connectivity. We focus on atypical
intrahemispheric functional connectivity, based on studies
showing greater within-hemisphere interactions for left-
lateralized functions [5] and previous studies applying a
similar rationale [4, 46, 50]. We hypothesized that children
with ASC would show reduced leftward or increased right-
ward lateralization of motor connectivity, associated with
poorer performance on motor tasks.

Methods
Participant characteristics
Participants comprised 44 right-handed children with ASC
(36 males, 8 females) and 80 right-handed typically devel-
oping children (58 males, 22 females) between 8 and
12 years of age (ASC mean = 10.23, standard deviation
(SD) = 1.51, range = 8.01–12.99; controls mean = 10.15,
SD = 1.08, range = 8.07–12.76) (see Additional file 1; for
participant characteristics of the final sample, see Table 1).
Individuals with ASC were recruited through advertise-
ments placed within community-wide service groups,
schools and hospitals, as well as from outpatient clinics at
the Kennedy Krieger Institute in Baltimore. Participants
with ASC received a clinical diagnosis according to the
criteria of the Diagnostic and Statistical Manual of Mental
Disorders–IV [51], and diagnoses were confirmed using
the Autism Diagnostic Interview–Revised (ADI-R; [52])
and Module 3 of the Autism Diagnostic Observation
Schedule (ADOS-G; [53]). Participants were excluded if
they met any of the following criteria: (1) a history of
seizures and/or traumatic brain injury; (2) a full-scale IQ
(FIQ) less than 80 (in cases where the FIQ was less than
80, participants were still included if their verbal com-
prehension index (VCI) or perceptual reasoning index
(PRI) was higher than 80), as assessed by the Wechsler
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Intelligence Scale for Children- fourth edition (WISC-III/
IV; [54, 55]); (3) a developmental language disorder; (4)
reading disability; (5) visual impairment and (6) neuro-
logic disorder such as epilepsy. The Diagnostic Inter-
view for Children and Adolescents, fourth edition
(DICA-IV; [56]) was used to determine the presence of
additional psychiatric diagnoses. Children with ASC met
the following additional DICA-IV diagnoses: ADHD (16),
OCD (4), specific phobia (9), generalized anxiety disorder
(GAD) (4) and oppositional defiant disorder (ODD) (8).
Twenty-four children with ASC were actively taking psy-
choactive medications, including stimulants (13), selective
serotonin reuptake inhibitors (SSRI) (6), clonidine (2), ris-
peridone (2) and lithium (2). Stimulant medications were
discontinued the day prior to testing; all other medications
were taken as prescribed. There was no diagnosis or
family history of ASC in the typically developing con-
trol group. We included only individuals in the current
sample with less than 3 mm translational and 3° rotational
movement over the course of the resting scan.

Cognitive and behavioural measures
Physical and Neurological Examination of Subtle Signs
Motor skills were assessed outside the scanner using the
Physical and Neurological Examination of Subtle Signs
(PANESS; [57]), a battery of motor control tasks de-
signed for children and standardized for age, sex and
handedness. It is sensitive to children’s developmental
changes in motor skills such as balance, coordination

and speed and has adequate test-retest reliability, inter-rater
reliability and internal consistency. Motor signs are quanti-
fied as dysrhythmia (inappropriate timing or sequencing of
movements) and overflow (unintended and unnecessary
movements) examined while performing gait, station and
timed limb movements. Gaits and station measures are
based on gait and balance assessment (gaits on heels, toes
and sides of feet and tandem, standing and hopping on one
foot, etc.). Timed limb movements are assessed during per-
formance of repetitive and sequential movements of the
hands and feet such as finger tapping, hand patting and toe
tapping. Speed, overflow and dysrhythmia are incorporated
into the total timed score. In addition to examining the
total gait score and total timed score, the total PANESS
score was also examined. For all three measures, better per-
formance is associated with lower scores.

Handedness
Handedness was assessed using the Edinburgh Handed-
ness Inventory (EHI; [58]), a self-completed questionnaire
for determining hand preference. The sample comprised
only right-handed individuals with EHI scores >40.

Structural and functional magnetic resonance imaging
acquisition
All participants performed a mock scan the day before
the actual scan. All individuals underwent scanning on
one of two 3-T Philips scanners (2D-SENSE EPI, 8-
channel head coil, SENSE acceleration = 2.0), and axially

Table 1 Participant characteristics of final sample

Characteristics ASC (n = 42) Controls (n = 76) Statistics

Mean SD Range Mean SD Range

Sex 34 males; 8 females – – 54 males; 22 females – – χ2(1) = 0.925, p = 0.336

Agea 10.18 (1.51) 8.01–12.99 10.16 (1.03) 8.07−12.58 t = −0.092, p = 0.927

Full-scale IQb 104.67 (15.10) 73–141 112.89 (10.78) 85–140 t = 3.136, p = 0.003

VCIb 107.95 (15.53) 79–134 117.29 (12.37) 85–140 t = 3.353, p = 0.001

PRIa 107.45 (14.31) 79–135 109.30 (11.44) 79–133 t = 0.768, p = 0.444

Handednessa 86.5 (Median) 50–100 88.00 (Median) 41–100 U = 1590.5, p = 0.974

ADI-Rc

Social 20.62 (5.82) 10–30 – –

Communication 15.95 (4.68) 4–25 – –

RSB 6.64 (2.15) 3–12 – –

ADOS-Gc

Communication 3.40 (1.06) 1–7 – –

Social 7.48 (1.98) 4–12 – –

RSB 3.05 (1.70) 0–6 – –

Abbreviations: PRI perceptual reasoning index, VCI verbal comprehension index
aThere were no significant differences between the ASC and control groups in age, sex, PRI or handedness (p > 0.05)
bThe two groups significantly differed in FIQ and VCI (p < 0.001)
cInformation was available for all 42 individuals with ASC
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oriented volumes were acquired using T2*-weighted echo-
planar imaging (field of view: 256 × 256 mm, matrix size
64 × 64, repetition time = 2500 ms, echo time = 30 ms, flip
angle = 75°). Resting-state scans were acquired for 5 min
and 20 s. Children were asked to stay as still as possible
and fixate on a centre cross. T1-weighted high-resolution
anatomical images were acquired coronally (field of view
256 × 200 mm2, matrix size 256 × 256, repetition time =
7.99 ms, echo time = 3.76 ms, flip angle = 8°, 1 mm iso-
tropic voxels, slice thickness = 1 mm). These were used
to generate age- and gender-matched symmetrical tis-
sue priors.

Image preprocessing
Functional T2*-weighted images were preprocessed
using statistical parametric mapping (SPM12; Wellcome
Department of Imaging Neuroscience Group, London,
UK; http://www.fil.ion.ucl.ac.uk/spm). Images were slice-
time corrected using the middle slice as reference slice
and realigned relative to their mean. The high-resolution
anatomical images were then co-registered to the func-
tional images, segmented and normalized using a symmet-
rical, age- and gender-matched tissue prior generated with
the Template-O-Matic toolbox [59]. The use of a symmet-
rical template prevents an additional introduction of ana-
tomical asymmetries that might potentially interfere with
functional asymmetries [60]. The normalization trans-
formation was then applied to the functional images.
Further steps included linear detrending at each voxel
in the brain to correct for scanner drift, removal of
nuisance variables such as the white matter (WM) and
cerebrospinal fluid (CSF) using CompCor [61] (note
that we did not use global signal regression (GSR) to
avoid introduction of spurious anticorrelations in the
data [62]) and six absolute and six differential motion
parameters, spatial smoothing (6-mm full width at half
maximum (FWHM)), and temporal band-pass filtering
constraining the frequency window to 0.01–0.1 Hz. To
minimise the confounding influence of micromovement,
we computed the average framewise displacement (FD)
(based on the median due to a non-normal distribution of
movement) according to Power et al. [63] and excluded
any participant with a z score of >2.58 [64].

Creation of seed regions
Mostofsky et al. [22] identified the right hemisphere (RH)
and left hemisphere (LH) circuits involved in motor exe-
cution during a finger-sequencing paradigm in both chil-
dren with ASC and neurotypical controls between 8 and
12 years. They identified regions of interest by single-
group, whole-brain random effects analyses across both
groups by executing one-sample t tests on the individual
subject’s right- and left-rest contrast images. Individual
within-group whole-brain activation analyses were then

run for the two groups separately identifying peak activa-
tions by group. Here, peak coordinates were derived from
typical children and served as centres of seeds.
Based on the ‘left hemisphere dysfunction’ theory of aut-

ism, which states that neural impairments are lateralized
to the LH in individuals with ASC, we selected peak coor-
dinates from this LH motor circuit (see Table 2). The LH
motor circuit (right-sided movement) included the left
sensorimotor cortex (SMC), left thalamus (TH), left puta-
men (PUT), bilateral supplementary motor area (SMA)-
rostral (SMA-r), bilateral SMA-dorsal (SMA-d) and right
anterior cerebellum (AC) seeds [4].
Six-millimetre-radius 3D seeds were then created using

the SPM toolbox PickAtlas (http://fmri.wfubmc.edu/soft-
ware/PickAtlas) with the peak coordinates as the centre of
spheres. All seeds were flipped across the midline (x = 0)
in order to obtain a set of homotopic RH and LH seeds
(see Fig. 1). Time series were then extracted from the seed
regions of interest, and pairwise Pearson’s correlations
were performed for the LH and RH circuits separately.
Correlation coefficients were transformed to a normal dis-
tribution via Fisher’s z transform. Standardized correla-
tions between all seed pairs were then averaged to obtain
mean connectivity in the motor circuit in each hemi-
sphere (RH connectivity (Rcon); LH connectivity (Lcon))
using MATLAB. For the assessment of functional
lateralization, we calculated a laterality index (LI) for each
pairwise connection and for the overall mean network
connectivity by subtracting the connections in the LH
from homotopic connections in the right hemisphere:
Rcon − Lcon. Contrary to the usually applied formula for
the calculation of structural asymmetry indices ((R − L)/
(R + L)), here we did not include a denominator as func-
tional connectivity measures comprise both positive and
negative values, adversely influencing the index values [50].

Control networks
To test whether atypical lateralization is specific to the
motor network and its underlying lateralized functions, we
selected two control networks: the default mode network

Table 2 Motor coordinates (mm) based on Mostofsky et al. [22]

x y z

Sensorimotor −38 −30 51

Putamen −30 −3 −6

Thalamus −18 −27 9

B_SMA-d −9 9 46

9 9 46

B_SMA-r −12 −1 66

12 −1 66

Anterior cerebellum 16 −51 −25

Coordinates in MNI space
Abbreviations: SMA-d dorsal SMA, SMA-r rostral SMA
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(DMN) and a visual network (VN). DMN seeds were based
on peak seed regions of the task-negative network identi-
fied by Fox et al. [65] using resting-state connectivity.
Seeds were located in the cerebellum, posterior cingulate
cortex (PCC), medial prefrontal cortex (MPFC), retro-
splenial cortex (RSC), lateral parietal cortex (LP), superior
frontal gyrus (SFG), inferior frontal gyrus (IFG) and para-
hippocampal gyrus (PHG). The VN seeds were based on
visual seeds applied by Yeo et al. [66] and were comprised
of the central and peripheral primary visual cortex (V1c
and V1p), the central and peripheral regions near the visual
area V3v (V3pv and V3cv) and the extrastriate regions of the
central and peripheral visual subnetworks (ExP and ExC).

Statistical analyses
Group differences in mean connectivity and individual
connection pairs
Participants were excluded as outliers if the average FD
or laterality values had a z score of >2.58 [64, 67, 68].
For the analysis of the between-group differences in
mean network connectivity, a univariate analysis of co-
variance (ANCOVA) was conducted. To compare the
LIs of all the individual connectivity pairs between the
two groups (ASC vs. controls), separate ANCOVAs were
conducted with each individual connectivity pair as
dependent variables (DV) and the global mean of the LIs
of the remaining individual connectivity pairs of the net-
work (Global-Meannetwork) as nuisance covariates in
order to discount their global effect. ANCOVAs were
corrected for multiple comparisons by controlling the
false discovery rate (FDR) at q = 0.05. Age and scanning
machine were included as nuisance variables in all
models. To control for micromovements, average FD

was included as an additional covariate [67]. Further-
more, results were re-evaluated controlling for FIQ to
observe if they remained significant. To determine whether
significant group differences were driven by rightward
over-connectivity or leftward under-connectivity, we also
compared the Fisher transformed correlation coefficients
of the LH and RH circuits (Rcon and Lcon) between the
groups with the same model as that exploring the LI differ-
ences. To determine the direction of within-group circuit
laterality, one-sample t tests were carried out. In an
additional step, analyses were repeated in sex-stratified
samples. Effect sizes were calculated based on Cohen’s d.

Association with cognitive measures within ASC
To test whether atypical lateralization was related to
function, we conducted one-tailed (based on our hy-
pothesis that stronger rightward lateralization would be
related to more symptoms and poorer performance)
Pearson’s correlations controlling for scanner, age and
average FD within individuals with ASC. For individual
connectivity pairs, the Global-Meannetwork was addition-
ally included as a covariate. Motor LIs showing group
differences were correlated with (a) the repetitive behaviour
subscores of the ADI-R (ADI-C) and ADOS (ADOS-D)
and (b) the total PANESS score, total gait score (composite
measure of speed, overflow and dysrhythmia during gaits
and stations) and total timed score (composite measure of
speed, overflow and dysrhythmia during all timed move-
ments). Level of significance was set at p = 0.05, as all cor-
relation analyses were targeted. All statistical analyses were
carried out in SPSS (version 21, SPSS Inc.).
Based on previous reports showing a linkage between

motor and social development [69, 70] and the hypothesis

Fig. 1 Homotopic motor seeds derived from Mostofsky et al. [22]. Abbreviations: SMA-d dorsal SMA, SMA-r rostral SMA, Put putamen, Thal thalamus,
Cerb cerebellum. Red: left hemisphere seeds; Blue right hemisphere seeds
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that motor deficits might underpin some of the core
social-communicative symptoms in ASC [71], an addi-
tional, exploratory analysis was conducted posing the
question whether lateralization of motor circuit con-
nectivity was related to core social and communicative
symptoms, with stronger rightward lateralization being
related to more deficits as measured by the ADOS-A,
ADOS-B, ADI-A and ADI-B.

Results
Participant characteristics and task performance
Four control individuals and one individual with ASC
were excluded due to z values of >2.58 on average FD.
One additional individual with ASC was excluded due to z
values of >2.58 on more than three laterality measures.
The final sample consisted of 42 individuals with ASC (34
males, 8 females) and 76 controls (54 males, 22 females).
After exclusion, the two groups were matched on age
(t(62.51) = −0.092, p = 0.927), handedness (U = 1590.5,
z = −0.032, p = 0.974), sex (χ2(1) = 0.925, p = 0.336),
average FD (U = 1481, z = −0.646, p = 0.518) and PRI
(t(116) = 0.768, p = 0.444). There were, however, signifi-
cant differences in FIQ (t(64.87) = 3.136, p = 0.003) and
VCI (t(70.10) = 3.353, p = 0.001). Individuals with ASC
had significantly poorer performance on the total score
of the PANESS (F(1,115) = 45.081, p < 0.001), and on the
two sub-measures: total gait (F(1,115) = 36.804, p < 0.001)
and total timed (F(1,115) = 32.339, p < 0.001).

Group differences in lateralization of motor circuit
connectivity
There was a significant difference for the LI of mean
motor circuit connectivity between the ASC and control
group (F(1,113) = 6.814, p = 0.010; Cohen’s d = 0.506),
with children with ASC being more strongly rightward
lateralized (see Fig. 2a). The result remained significant
when controlling for FIQ (F(1,112) = 6.094, p = 0.015;
Cohen’s d = 0.479). This difference was driven by both
rightward over- and leftward under-connectivity in mean
motor connectivity in children with ASC (group differ-
ence Rcon F(1,113) = 1.110, p = 0.294; group difference
Lcon F(1,113) = 0.536, p = 0.466). A one-sample t test re-
vealed that children with ASC were rightward lateralized
(t(41) = 2.390, p = 0.022), whereas control children showed
a symmetrical organization (t(75) = −1.255, p = 0.213). In-
dividual LIs of ‘motor’ connections were not significantly
different or did not survive correction for multiple com-
parisons (see Table 3). After stratifying analyses by sex, the
result was trending in males only (F(1,83) = 3.920, p =
0.051; Cohen’s d = 0.438; FIQ F(1,82) = 2.512, p = 0.117;
Cohen’s d = 0.351) and not significant in females (F(1,25) =
1.311, p = 0.263; Cohen’s d = 0.489; FIQ F(1,24) = 3.701, p =
0.066; Cohen’s d = 0.822) (for a distribution of values across
sex, see Fig. 2b).

Association with cognitive measures in children with ASC
The LI of total mean motor connectivity was positively
associated with the total PANESS scores (r = 0.455, p =
0.002), total gait subscores (r = 0.434, p = 0.003) and total
timed subscores (r = 0.357, p = 0.013) (see Table 4). In
each case, stronger rightward lateralization was associated
with worse performance on the motor task (see Fig. 3a–c).
There were no associations with either the ADOS-D (r =
0.117, p = 0.238) or ADI-C (r = −0.026, p = 0.438). There
were no significant associations between the LI of mean
motor connectivity and the ADOS-A (r = 0.127, p =
0.220), ADOS-B (r = 0.217, p = 0.093), ADI-A (r = 0.065,
p = 0.348) and ADI-B (r = −0.075, p = 0.325). Correla-
tions with the PANESS were not significant in typical
children (total PANESS score r = −0.059, p = 0.310; total
gait subscores r = 0.094, p = 0.215; total timed subscores
r = −0.132, p = 0.133).

Fig. 2 a Group differences in LIs of mean motor network connectivity.
Abbreviations: NT neurotypicals (controls). Positive values indicate
rightward lateralization, negative values indicate leftward lateralization.
Children with ASC show reversed rightward lateralization of mean
motor connectivity. b LIs of motor network connectivity across sexes
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Control networks
Default mode network
There was no significant difference in LI of mean DMN
connectivity (F(1,113) = 2.12, p = 0.143) between individuals
with ASC and controls. Individual LIs of DMN connections
were not significantly different or did not survive correction
for multiple comparisons (for details, see Additional file 1).

Visual network
There was no significant difference in the LI of mean
VN connectivity (F(1,113) = 0.467; p = 0.496) between in-
dividuals with ASC and controls. Individual LIs of VN
connections were not significantly different (for details,
see Additional file 1).

Discussion
In the current study, we investigated whether the functional
motor execution network shows an atypical pattern of
hemispheric specialization in ASC. Consistent with our hy-
pothesis, we found stronger rightward lateralization in chil-
dren with ASC compared to typically developing children.

Disturbance in motor functioning in children with ASC has
been linked to dysfunction in multiple motor regions/sys-
tems, including the fronto-striatal and cerebellar systems
[22, 43, 72–74]. However, few studies have explored the
resting-state functional connectivity within the motor exe-
cution system in children with ASC [22, 43, 44]. Mostofsky
et al. [22] report the overall under-connectivity, which is
more pronounced during motor execution than during rest.
Nebel et al. [44] focused specifically on M1 connectivity,
examining autism-associated differences in regional M1
functional parcellation; they found organizational differenti-
ation in the motor homunculus pointing to an early failure
in functional specialization in the motor cortex in children
with ASC. Here, we further show that the neurobiological
underpinnings of motor impairments in ASC are related to
atypical hemispheric lateralization in motor circuits.
Our finding is particularly interesting in the light of rising

theories suggesting that autism is a condition of atypical
connectivity involving multiple cerebral networks deficient
in synchronization and information integration [36, 37].
However, so far, most functional connectivity studies in
ASC have focused on under- or over-connectivity of net-
works critically involved in cognitive and social functions
such as the default mode network [39–42] but have not ad-
dressed atypical lateralization of these circuits. Our findings
are in line with Cardinale et al.’s [45] report of rightward
lateralization of the motor networks. They reported on a
wider range of networks, raising the question whether atyp-
ical rightward asymmetry is a more fundamental feature of
network organization in ASC and not restricted to specific
functions such as language and motor behaviour. However,
we did not find atypical lateralization patterns across all
networks; that is, we observed no group differences in the
visual and default mode networks. These discrepancies
might be due to differences in methodology between the
two studies; Cardinale et al. [45] applied a model-free
whole-brain approach aggregating information across many
regions, whereas we took a hypothesis-driven approach, fo-
cusing on specific regions and their interconnections using
seed-based analysis. While seed-based and ICA-based ana-
lyses yield similar results [75], using a model-free explora-
tory approach may identify additional unexpected patterns
at the network level without making prior assumptions
about functional localization.

Rightward asymmetry of motor circuit functional
connectivity is associated with motor performance in
children with ASC
This study is the first to report a relationship between
autistic symptoms and hemispheric lateralization outside
the language domain in individuals with ASC; namely,
the more rightward asymmetry of the functional corres-
pondence within the motor circuit, the poorer motor
performance on three different measures of the PANESS.

Table 3 Group differences in LIs of individual motor connections

Connection ASC Controls F
(1,112)

p q

Mean (SD) Mean (SD)

SMA-d-AC 0.006 (0.17) −0.409 (0.14) 1.555 0.215 0.50

SMA-d-M1 0.072 (0.20) 0.001 (0.19) 3.756 0.055 0.35

SMA-d-Put 0.025 (0.18) 0.033 (0.17) 0.902 0.344 0.63

SMA-d-Thal 0.029 (0.19) −0.044 (0.19) 0.583 0.447 0.63

SMA-r-AC 0.009 (0.15) −0.026 (0.16) 0.667 0.416 0.63

SMA-r-M1 0.074 (0.22) −0.004 (0.16) 3.126 0.08 0.35

SMA-r-Put −0.005 (0.15) 0.049 (0.17) 7.634 0.007 0.098

SMA-r-Thal 0.003 (0.19) −0.034 (0.18) 0.006 0.939 0.94

AC-M1 0.032 (0.22) −0.005 (0.21) 0.161 0.689 0.80

AC-Put 0.013 (0.18) −0.002 (0.17) 0.099 0.754 0.81

AC-Thal 0.042 (0.22) −0.048 (0.18) 2.388 0.125 0.35

M1-Put 0.037 (0.22) −0.009 (0.24) 0.221 0.639 0.80

M1-Thal 0.077 (0.18) −0.019 (0.20) 2.627 0.108 0.35

Put-Thal −0.008 (0.18) −0.017 (0.24) 0.577 0.449 0.63

Abbreviations: SMA-d dorsal SMA, SMA-r rostral SMA, SMC sensorimotor cortex,
Put putamen, Thal thalamus, AC anterior cerebellum

Table 4 Correlations between the LI of mean motor circuit
connectivity and motor-related symptoms

Motor measure LI mean motor circuit connectivity

PANESS total r = 0.455, p = 0.002*, q = 0.008

PANESS gait r = 0.434, p = 0.003*, q = 0.008

PANESS timed r = 0.357, p = 0.013*, q = 0.021

ADI-C r = -0.026, p = 0.438, q = 0.438

ADOS-D r = 0.117, p = 0.238, q = 0.298

* = significant at q<0.05
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Both Nielsen et al. [46], who reported atypical lateralization
in a language-related network, and Cardinale et al. [45],
who reported rightward lateralization of the motor net-
work, did not find such brain-behavioural association.
Here, we highlight the importance of their findings by
showing functional relevance in children with ASC.
Lateralization has been linked to fine motor skills, pri-
marily in relation to handedness. Interestingly, here, we
showed that, in addition to fine motor skills, gross
motor performances such as gait, balance, timing and
sequencing of movements were also associated with
atypical hemispheric specialization in children with
ASC. Therefore, rightward lateralization may underlie
gross motor deficits and atypical gait commonly found
in individuals with ASC.
Leftward lateralization of the same circuit has previ-

ously been shown to be associated with better motor
performance in typically developing children [4]; how-
ever, we did not replicate this result here. It remains to
be established whether this is due to differing sample
characteristics and methods (note that Barber et al. used
a different registration approach and laterality index)
and whether lateralization of this network constitutes
the biological underpinnings for typical motor develop-
ment or for motor deficits in ASC specifically.
Lateralization in the motor system is present in both

structure and function, although it is generally less pro-
nounced compared to the language system lateralization,
which would explain why typical children show a subtle
shift only towards left here. Structurally, this is charac-
terized by a deeper left central sulcus, increased leftward
neuropil in BA4 [76] and expansion of the left hand
motor cortex in right-handers [77]. Guye et al. [78] show
that whole-brain functional connectivity is more extensive
with the left than with the right primary motor cortex.
Left premotor and parietal regions are more strongly im-
plicated in higher order actions [79]. Also, the planning of
complex, sequential movements [79–81], bimanual coord-
ination [82, 83] and response selection [84] have been at-
tributed to the left hemisphere, which is interesting
considering the problems individuals with ASC experience
with fine motor skills [85] and planned sequencing of
actions [86]. In contrast, sensory processing and spatial as-
pects of sensorimotor actions have been reported to show
right hemisphere dominance [87–89]. It has been sug-
gested that posture and limb position [90], as well as the
use of proprioceptive feedback [91, 92], are preferentially

Fig. 3 Association between LI of mean motor network connectivity
and motor-related symptoms. a Association between LI of mean motor
network connectivity and PANESS total scores. b Association between
LI of mean motor network connectivity and PANESS total gaits scores.
c Association between LI of mean motor network connectivity and
PANESS total timed scores
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lateralized to the right hemisphere in right-handed indi-
viduals. Interestingly, we have previously reported that in-
dividuals with ASC rely to a much greater extent on
proprioceptive feedback during motor learning, which is
related to more severe motor impairments and other so-
cial symptoms [93]. Atypical rightward lateralization of
motor circuits might constitute a neural mechanism con-
tributing to this finding.
Reports of disturbance in establishing typical patterns

of hemispheric specialization in ASC date back to the
consistently replicated observation of increased rates of
left-handedness among individuals with ASC [94–101].
Left-handers activate the right premotor cortex during
contra- and ipsilateral finger movements [102] and have
increased intrasulcal surface in the right precentral gyrus
[76]. Interestingly, our results are not driven by differences
in handedness, as participants were matched on a measure
of handedness and were right-handed. Still, it will be inter-
esting to explore whether the observed pattern is even
more pronounced in left-handed individuals with ASC.

Implications of motor deficits in ASC
Motor deficits are present in at least 80 % of children
with ASC [28, 103, 104] comprising some of the earliest
signs, such as delays in motor milestones [105, 106].
Later on in development, motor-related deficits persist
and become more apparent, with deficits in gross and
fine motor coordination [19, 47, 107, 108], atypical gait
and posture [109, 110] and particularly difficulty with
performance of skilled gestures (i.e. praxis) [18, 27, 28].
In line with this, it has been argued that core social and

communicative symptoms in autism might be subserved
by the same neural systems underpinning motor-related
dysfunction [111, 112]. In fact, there is a close relationship
between motor and social-communicative behaviours:
motor development is the prerequisite for speech, ar-
ticulation and engagement in the social world through
directing attention, grasping and sharing things, and
approaching, imitating and responding to others. In line
with this, Iverson and Braddock [113] have shown that
children with language deficits have poorer fine and
gross motor skills. At the same time, production and
understanding of actions, such as performance of se-
quences of actions and following verbal commands, are
dependent on the development of language skills. Thus,
atypical lateralization in related cognitive domains such
as language might be influenced by the same developmen-
tal mechanisms [114, 115]. Notably, here, we did not find
a significant association between atypical motor circuit
lateralization and social-communicative sub-measures of
either the ADOS or ADI. Given that other studies find
such relationship [116], future research needs to examine
a potential association with more specific measures of
atypical social development in ASC and explore the link

between motor and social networks directly at the neur-
onal level.

Limitations and future directions
Here, we report atypical laterality of the motor network
in children with ASC. Given that ASC is a neurodevelop-
mental condition, it remains to be established whether the
observed pattern is stable across the lifespan. Many stud-
ies show temporal test-retest reliability and reproducibility
of functional resting-state networks [117–119]. It has been
argued that neural coupling configurations are dynamic
and transient over time with fluctuations in connection
strengths [120, 121]. As arousal, sleep [122], conscious
[123], cognitive [124] and emotional [125] states consti-
tute influencing factors, only replication in independent,
longitudinal samples can confirm the stability of the re-
ported findings. Age-related changes have been described
in a range of different networks, with decreasing connecti-
vity representing increasing hemispheric specialization
and increasing connectivity representing increasing func-
tional cooperation [126]. The same authors also reported
not only linear but also quadratic and cubic age effects on
changes of functional connectivity, emphasizing the need
for longitudinal samples to fully explore the stability and
plausible developmental trend of the reported findings.
One limitation concerns the heterogeneity within ASC.

Children with ASC frequently have other comorbid condi-
tions, such as ADHD, which is another condition associ-
ated with atypical lateralization [127]. Also, Mahajan et al.
[128] showed that individuals with ASC with and without
ADHD show differences in motor cortex laterality with
children with ASC without ADHD exhibiting rightward in-
creases in M1, whereas children with ASC and comorbid
ADHD showing left-lateralized increases. Medication ex-
posure is another possible confound which might influence
connectivity strength [129–131]. Overall, a large portion of
individuals with ASC have psychiatric comorbidities during
their lifespan (ADHD 28–44 %; anxiety 42–56 %; depres-
sion 12–70 %; oppositional defiant disorder 16–28 %;
[132]) and around 70 % of children with ASC use some
form of psychoactive medication [133, 134], making any
sample that excludes these individuals less representative
of the autistic population.
It remains to be established whether these results are

restricted to lateralized left hemisphere functions or
whether right hemisphere functions such as visuospatial
abilities are also affected. Cardinale et al. [45] report right-
ward asymmetries of more widespread networks including
those underlying visuospatial attention, but no other stud-
ies have looked at hemispheric specialization of visuo-
spatial information processing in ASC. Future research
should explore whether stronger rightward lateralization
might underpin superior visual attention and weak cen-
tral coherence in ASC and whether this potentially
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differentiates between individuals with ASC with and
without enhanced visuospatial processing abilities.
Heterogeneity within the autism spectrum is the biggest

challenge in the current research. It will be of interest to
explore whether atypical motor network lateralization is
characteristic of an as-yet undefined subgroup within
ASC, such as language delay, for example, [60]. Other fac-
tors constituting heterogeneity include handedness, sex or
IQ. We previously showed that handedness can be a
marker of rightward lateralization of structural con-
nectivity of regions connecting sensorimotor cortical
areas [135]. Whether this also applies to functional
lateralization remains to be established. As for sex, our
findings here were most pronounced when including
both males and females. Sex-stratified analyses show an
overlapping functional organization in males and females
with ASC regarding lateralization of the motor network.
In general, few studies have looked at sex differences in
the laterality of resting-state connectivity. Tian et al. [136]
reported that males show more locally efficient right
hemisphere networks, whereas females have more locally
efficient left hemisphere networks. Zuo et al. [126] re-
ported that homotopic resting-state connectivity in the
dorsolateral prefrontal cortex and the amygdala show op-
posite developmental trajectories in males and females.
How functional connectivity and its lateralization further
differ across genders in ASC awaits investigation. Re-
garding IQ, our sample was only matched on percep-
tual reasoning IQ; however, additional analyses showed
that results remained largely unaffected by full-scale IQ
(i.e. when controlling for FIQ). As motor delay is mostly
evident in low-functioning individuals [137, 138], it will be
important to explore whether this result is more pro-
nounced in this sub-population with ASC.
The present findings were based on patterns observed

in the so-called resting state, and it will be interesting to
explore whether atypical rightward lateralization remains
robust under conditions when the motor execution net-
work is active, as well as whether they are more pro-
nounced in particular parcels underlying the motor
homunculus. Lastly, here, we focused on atypical intra-
hemispheric connectivity. However, many studies have
shown that atypical interhemispheric connectivity (such
as reduced corpus callosum size) contributes to atypical
connectivity in ASC [139–141]. Efficient information
processing across the whole brain substantially depends
on interhemispheric integration, which may be impaired
in ASC [142]. Herbert et al. [143] show that only intra-
hemispheric connectivity is impaired in ASC, whereas
others demonstrate that intra- and interhemispheric
connectivities are both affected [141, 144]. Particularly,
the right hemisphere regions involved in visuospatial pro-
cessing have been suggested to rely on more integrative,
interhemispheric processing [5]. Thus, future studies need

to explore whether atypical lateralization in ASC extends
to cross-hemispheric networks, particularly for functions
such as visuospatial skills.

Conclusions
Our novel findings show that atypical functional late-
ralization in ASC extends beyond the language domain
to functional circuits underlying motor execution. The
deficit in children with ASC in establishing a typical pat-
tern of hemispheric specialization for motor control may
contribute to difficulties with motor skill development
and might even form the early basis for the development
of social and communicative impairments. It remains to
be established whether atypical lateralization in function-
ally related domains (motor and language functions) share
common neurodevelopmental origins and trajectories.
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