
Article

Abnormal Functional Activation and Maturation of
Fronto-Striato-Temporal and Cerebellar Regions During

Sustained Attention in Autism Spectrum Disorder

Clodagh M. Murphy,
M.R.C.Psych.

Anastasia Christakou, Ph.D.

Eileen M. Daly, Ph.D.

Christine Ecker, Ph.D.

Vincent Giampietro, Ph.D.

Michael Brammer, Ph.D.

Anna B. Smith, Ph.D.

Patrick Johnston, Ph.D.

Dene M. Robertson,
M.R.C.Psych.

MRC AIMS Consortium

Declan G. Murphy, M.D.,
F.R.C.Psych.

Katya Rubia, Ph.D.

Objective: Sustained attention problems
are common in people with autism spec-
trum disorder (ASD) and may have sig-
nificant implications for the diagnosis
and management of ASD and associated
comorbidities. Furthermore, ASD has been
associated with atypical structural brain
development. The authors used functional
MRI to investigate the functional brain
maturation of attention between child-
hood and adulthood in people with ASD.

Method: Using a parametrically modu-
lated sustained attention/vigilance task,
the authors examined brain activation and
its linear correlation with age between
childhood and adulthood in 46 healthy
male adolescents and adults (ages 11–35
years) with ASD and 44 age- and IQ-
matched typically developing comparison
subjects.

Results: Relative to the comparison group,
the ASD group had significantly poorer task
performance and significantly lower activa-
tion in inferior prefrontal cortical, medial
prefrontal cortical, striato-thalamic, and
lateral cerebellar regions. A conjunction
analysis of this analysis with group differ-
ences in brain-age correlations showed
that the comparison group, but not the
ASD group, had significantly progressively
increased activation with age in these
regions between childhood and adulthood,
suggesting abnormal functional brain mat-
uration in ASD. Several regions that showed
both abnormal activation and functional
maturation were associated with poorer
task performance and clinical measures
of ASD and inattention.

Conclusions: The results provide first evi-
dence that abnormalities in sustained
attention networks in individuals with ASD
are associated with underlying abnormal-
ities in the functional brain maturation of
these networks between late childhood
and adulthood.

(Am J Psychiatry 2014; 171:1107–1116)

Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder characterized by pervasive abnormalities
in reciprocal social communication and stereotyped, re-
petitive behaviors. Difficulties with attention are also
common (1), and they contribute to the cognitive phe-
notype of ASD (2) and have significant implications for
the diagnosis and management of ASD and associated
comorbidities (3).
Comorbid attention deficit hyperactivity disorder (ADHD)

is common and persists with age in individuals with ASD
(4, 5). Previously, diagnostic guidelines precluded diag-
nosing ASD and comorbid ADHD. However, DSM-5 allows
this, enabling greater understanding of comorbid atten-
tion difficulties. People with ASD have been found to have
difficulties with sustained attention (6–9), although there
have also been negative findings (10). Furthermore, it has
been suggested that sustained attention may be an en-
dophenotype that could help identify the neurobiological
causes of ASD (11). Understanding theneurofunctional dif-
ferences underlying attention problems in ASD is important,

as it may help elucidate objective biomarkers of ASD and
potential targets for treatment development.
Nevertheless, despite evidence of poor sustained atten-

tion in individuals with ASD, only one published func-
tional MRI (fMRI) study of sustained attention has shown
dorsolateral prefrontal, striato-thalamic, and cerebellar
underactivation in children with ASD relative to compar-
ison subjects (12). However, ASD is a neurodevelopmental
disorder that persists across the lifespan. A key question is
therefore whether functional brain abnormalities are pres-
ent during childhood and adulthood, and if so, whether
they are due to abnormal functional maturation of these
networks.
There is evidence of abnormal longitudinal age-related

changes in the brain structure of individuals with ASD in
early childhood (13, 14, 15) and adolescence (16, 17), and
cross-sectional studies report abnormal age-related differ-
ences in brain structure from childhood to adulthood
(18–21). However, no developmental fMRI study has in-
vestigated whether functional brain maturation between
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childhood and adulthood differs in people with ASD from
typical development during attention or any other cog-
nitive function.

The aimof this cross-sectional developmental fMRI study
was to investigate 1) the neural substrates underlying per-
formance on a sustained attention/vigilance task of para-
metrically modified attention load in a relatively large group
of healthy male adolescents and adults with ASD and age-,
sex-, and IQ-matched typically developing healthy com-
parison subjects; and 2) age-related differences in neuro-
functional maturation between childhood and adulthood
in people with ASD relative to comparison subjects. The
task we used requires subjects to respond to a visual stim-
ulus appearing in either predictable short intervals (0.5
seconds) or unpredictable long intervals (2, 5, or 8 seconds).
Long, infrequent, unpredictable delays place a higher load
on sustained attention/vigilance than short, predictable
delays (12, 22).

fMRI studies of other sustained attention/vigilance tasks
(for example, the continuous performance task) in typically
developing adolescents and adults have shown activation
in inferior and dorsolateral prefrontal, striato-thalamic,
parieto-temporal, and cerebellar regions (23–25), which
progressively increases with age between childhood and
adulthood (24–26). We hypothesized 1) that individuals
with ASD would show lower activation in fronto-striato-
cerebellar sustained attention networks than typically
developing comparison subjects and 2) that these func-
tional deficits would be associated with abnormalities in
underlying functional brain development between child-
hood and adulthood.

Method

Participants

A total of 90 physically healthy, medication-naive, right-handed
males participated; 46 had ASD diagnoses and 44 were typically
developing comparison subjects. Participants’ ages ranged from
11 to 35 years, and all had an IQ $70 (27). Comparison subjects
were recruited locally by advertisement and scored below cut-off
for pathology on the General Health Questionnaire (GHQ) (28),
the Strengths and Difficulties Questionnaire (29), and Conners’
Parent Rating Scale–Revised, Long Version (30). Parents of
children with ASD completed the Strengths and Difficulties
Questionnaire and the Conners scale, and parents of adults with
ASD completed the Barkley Parent Report (31). Participants with
ASD were recruited with support from the National Autistic
Society and the Maudsley Hospital. ASD diagnosis was made
by a consultant psychiatrist using ICD-10 research diagnostic
criteria and confirmed using the Autism Diagnostic Interview–
Revised (ADI-R) (32). The ADI-R and the Autism Diagnostic
Observation Schedule (ADOS) (33) were completed for all 46
participants with ASD; all 46 reached algorithm cut-offs for
autism in all domains on the ADI-R (social, communication,
restricted/stereotyped) and the ADOS (communication, social).
Participants with ASD either fulfilled ICD-10 research diagnostic
criteria for childhood autism (N=14) or fulfilled these criteria but
had no history of language delay and therefore were subtyped
with Asperger’s syndrome (N=32) (Table 1).

All participants underwent a structured clinical examination to
exclude comorbid medical disorders, major psychiatric disorders,
and biochemical, hematologic, or chromosomal abnormalities
that might affect brain function. Exclusion criteria were com-
orbid psychiatric or medical disorders affecting brain devel-
opment (e.g., epilepsy or psychosis), psychotropic medication
(antipsychotics, stimulants, mood stabilizers, antidepressants,
benzodiazepines), substance dependence, history of head injury,
genetic disorder associated with ASD (e.g., fragile X syndrome,
22q11 deletion syndrome), or abnormal findings on head MRI.

Forty participants (20 in the comparison group, 20 in the ASD
group) also participated in our study of sustained attention in
pediatric ASD relative to ADHD (12).

The local Ethics Committee conferred ethical approval, and
written informed consent or assent was obtained from each par-
ticipant. Each participant received £30.

Sustained Attention fMRI Task

Each participant practiced the task once in a mock scanner
before scanning. The 12-minute sustained attention task (12) is
a variant of psychomotor/vigilance and delay tasks (12, 22, 34)
and requires subjects to respond as quickly as possible, with a
right-handed button press, to a visual stimulus (a timer counting
up in milliseconds) within 1 second. Subjects obtain implicit
feedback by seeing the timer displaying the number of milli-
seconds it took them to respond to the timer. The timer appears
after either short, predictable, consecutive delays of 0.5 seconds
in series of three to five stimuli (240 trials total) or after un-
predictable delays of 2, 5, or 8 seconds (20 trials each), pseu-
dorandomly interspersed into the 0.5-second series after at least
three predictable short delays (see Figure S1 in the data sup-
plement that accompanies the online edition of this article).

Analysis of Performance Data

Multiple repeated-measures analyses of variance (ANOVAs)
(with group as the independent measure and delay as the re-
peated measure) were conducted to test for group performance
differences, including mean reaction time, intrasubject response
variability of reaction time (intrasubject standard deviation),
omission errors, and premature responses.

fMRI Image Acquisition

fMRI images were acquired on a 3-T General Electric Signa
HDx Twinspeed scanner (Milwaukee, Wisc.) using a quadrature
birdcage head coil. In each of 22 noncontiguous planes parallel
to the anterior-posterior commissure, 480 T2*-weighted images
depicting blood-oxygen-level-dependent (BOLD) contrast span-
ning the entire brain were acquired (TE=30 ms, TR=1.5 seconds,
flip angle=60°, in-plane resolution=3.75 mm, slice thickness=5.0
mm, slice skip=0.5 mm). A whole-brain structural scan (inversion
recovery gradient echo planar image), on which to superimpose
activation maps, was acquired in the intercommissural plane
(TE=40 ms, TR=3 seconds, flip angle=90°, 43 slices, slice thick-
ness=3.0 mm, slice skip=0.3 mm).

fMRI Data Analysis

Event-related activation data were acquired in randomized
trial presentation and analyzed using the XBAM method of non-
parametric data analysis (35, 36). After preprocessing (see the
online data supplement), a time-series analysis of individual sub-
ject activation was performed (XBAM, version 4) with a wavelet-
based fMRI data resampling method (36). Using rigid body and
affine transformation, individual maps were then registered in
Talairach standard space (37).

A group brain activation map was then produced for each
experimental condition (long delays of 2, 5, or 8 seconds), each
contrasted with the implicit baseline (frequent 0.5-second
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intervals). Only correct trials were included in the analyses.
Hypothesis testing was carried out at the cluster level. A voxel-
wise test at p,0.05 was conducted to identify any voxels that
might plausibly be activated, followed by a subsequent test at
a cluster-level threshold of p,0.01 to remove false positive
clusters produced by the voxel-level test. Combined voxel/cluster
tests with permutation testing allow for excellent type I error
control (36). For the group activation analysis, less than one false
positive activated three-dimensional cluster was expected at
p,0.05 in voxel-level comparisons and at p,0.01 in cluster-level
comparisons.

For between-group comparisons of brain activation, a split-plot
ANOVA design (three time delays, two groups) was conducted
using a randomization-based test for voxel- or cluster-wise
differences (36). Less than one false positive activation cluster
was expected at p,0.05 at voxel level and at p,0.01 at cluster
level.

Whole-Brain Correlations Between Activation and
Age Within Groups and Group Differences Between
Whole-Brain Age Correlations

Because ANOVA showed that group differences increased pro-
gressively with delay, we used the longest delay (8 seconds) for
the whole-brain age correlation analyses. To test for a linear cor-
relation between whole-brain activation and age, the Pearson
product-moment correlation coefficient was first computed at
each voxel in standard space between age data and signal change
across all subjects. Correlation coefficients were recalculated
after randomly permuting the ages, but not the fMRI data. Mul-
tiply repeating the second step (1,000 times per voxel, then
combining across all voxels) gives the distribution of correlation
coefficients under the null hypothesis of no association between
specific ages and specific BOLD effects. This null distribution
can then be used to assess the probability of any particular

TABLE 1. Characteristics of Individuals With Autism Spectrum Disorder (ASD) (N=46) and Typically Developing Comparison
Subjects (N=44)

Comparison Group (N=44) ASD Group (N=46)

Measurea Mean SD Mean SD

Age (years; range, 11–35) 19 6 18 6
Full-scale IQ 117 12 114 14
Verbal IQ 119 12 113 17
Performance IQ 122 9 111 13
Autism Diagnostic Interview–Revised
Social score 21 5
Communication score 16 5
Restricted, repetitive behavior score 6 2

Autism Diagnostic Observation Schedule
Communication score 4 1
Social score 9 2
Total (communication and social) score 13 3
Stereotyped behaviors and restricted behavior score 2 2

Strengths and Difficulties Questionnaire, hyperactivity
and attentional difficulties score

3 2 6 2

Conners’ Parent Rating Scale–Revised, Long Version
DSM-IV inattentive score 47 9 68 14
DSM-IV hyperactive-impulsive score 48 8 74 14
DSM-IV total score 48 9 74 11

Barkley Self-Report
Childhood Behavior Questionnaire
Inattention score 5 3
Hyperactivity/impulsivity score 4 2

Current Behavior Questionnaire
Inattention score 3 3
Hyperactivity/impulsivity score 3 3

Barkley Parent Report
Childhood Behavior Questionnaire
Inattention score 5 3
Hyperactivity/impulsivity score 4 2

Current Behavior Questionnaire
Inattention score 3 3
Hyperactivity/impulsivity score 3 2

a For verbal and performance IQ, data were available for all participants in the ASD group and 24 in the comparison group (24 comparison
subjects completed the Wechsler Abbreviated Scale of Intelligence and 20 completed the Raven’s Performance Matrices). For the Strengths
and Difficulties Questionnaire, data were available for 23 children in the comparison group and 29 children in the ASD group. Conners’
Parent Rating Scale–Revised, Long Version was completed by 17 parents of comparison children and by all 29 parents of children in the ASD
group. The Barkley Self-Report Behavior Questionnaire was completed by all 17 adults with ASD, and the Barkley Parent Report Behavior
Questionnaire was completed by all 17 parents of adults with ASD.
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correlation coefficient under the null hypothesis. The critical
value of the correlation coefficient at any desired type I error
level in the original (nonpermuted) data could be determined by
reference to this distribution. Statistical analysis was extended to
cluster level (36).

To test whether group had differential effects on linear age
correlations across the whole brain, group differences were
examined in the correlation coefficients of brain activation with
age. For each group independently, the average Pearson cor-
relation coefficient between subject age and fMRI response was
computed and group differences in correlation were calculated.
To determine the significance of this difference, the appropriate
null distribution was generated by randomly permuting subjects
and ages between groups, thus scrambling any group differences.
For each permutation, the correlation difference between scram-
bled groups was calculated and the resulting values were com-
bined across all voxels to produce a whole-brain null distribution
of differences in correlation. Testing was then extended to cluster
level, with the cluster probability under the null hypothesis
chosen to set the level of expected type I error clusters at less
than one. Less than one error cluster was observed (at p,0.05
for voxel and p,0.01 for cluster analyses). Areas where either group
showed exclusive significant progressive or regressive changes are
reported.

To determine the direction of group differences in age cor-
relations, post hoc analyses were conducted on the statistical mea-
sures of the BOLD response extracted for each subject in these
regions, and age correlations were then performed for all clusters
within each group.

Conjunction Analysis

To test whether areas of group differences were associated
with differential neurofunctional development, we performed
a conjunction analysis between the ANOVA group difference
analysis and differences in whole-brain age correlations. Thus,
we identified voxels where both the ANOVA group effect and
between-group differences in whole-brain age correlations were
significant (38).

Results

There were no significant differences in age or IQ
between the ASD and comparison groups.

Performance

Across all participants, there was a significant effect of
delay on reaction time (F=124, df=3, 86, p,0.001), intra-
subject standard deviation (F=8, df=3, 86, p,0.001), and
omission errors (F=3, df=3, 86, p,0.036) (see Table S1 in
the online data supplement).

This analysis was repeated with age as a covariate. There
was a significant effect of group on reaction time (F=12,
df=1, 87, p,0.001) and intrasubject standard deviation
(F=10, df=1, 87, p,0.002) as a result of the ASD group
having a slower reaction time and greater intrasubject
variability than the comparison group. No significant
group-by-delay effect was observed.

Age Effects on Performance

Reaction time, intrasubject standard deviation, and pre-
mature responses were all significantly negatively corre-
lated with age in both the ASD and comparison groups
(r=20.463, p,0.001) (see Table S1 in the data supplement).

There was a significant between-group difference in age
correlation with reaction time only (p,0.001), because of
significantly stronger age correlations in the comparison
group (r=20.645, p,0.001) relative to the ASD group
(r=20.409, p,0.005).

Movement

There was no significant group effect in the extent of
three-dimensional motion as measured by maximum,
minimum, or median displacement in the x, y, and z axes
(see Table S2 in the online data supplement).

fMRI Results

Brain activations within each group are shown in Figure
S2 in the online data supplement.

ANOVA group difference effect across all delays. Across all
delays, the comparison group, relative to the ASD group,
showed higher activation in the left and right inferior
frontal cortex reaching into the superior temporal lobe, left
middle frontal cortex, insula, superior parietal cortex,
posterior cingulate/precuneus, supplementary motor area,
caudate, putamen, globus pallidus, thalamus,midbrain, and
left and right cerebellar vermis and hemispheres (Table 2,
Figure 1A).

Group differences in whole-brain correlations between

brain activation and age for the longest delay. Whole-
brain correlations between age and brain activation in-
dividually for each group for the 8-second delay are
shown in Figure S2 in the online data supplement.
The group difference analysis between whole-brain age

correlations showed that in several clusters, the compar-
ison group had higher activation with increasing age,
whereas in the ASD group, either this effect was diminished
or negative correlations with age were observed in the left
and right inferior frontal cortex-superior temporal junction,
the left middle frontal gyrus/inferior frontal cortex, left and
right superior and middle temporal and inferior and
superior parietal regions, left striato-thalamic areas, the
posterior cingulate, the midbrain, and the right cere-
bellar hemispheres and vermis (Table 3, Figure 1B).

Conjunction Analysis

The conjunction analysis showed five areas of overlap
that both differed significantly between groups and
increased significantly with age in the comparison group
but not the ASD group: the right inferior frontal cortex-
superior temporal junction reaching into the putamen;
the left inferior frontal cortex reaching into the superior
temporal lobe; the left middle frontal cortex; a cluster
including the right thalamus, globus pallidus, and mid-
brain; and a right lateral cerebellar cluster (Table 4,
Figure 1C).

Brain-Performance and Brain-Behavior Correlations

To investigate whether regions that survived the con-
junction analysis were associated with performance or
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behavior, the statistical BOLD response in these regions
was extracted for each subject and then correlated with
reaction time for each group and, in the ASD group, with
ADOS (communication, social) scores and z-transformed
ADHD scores (z-transformed Conners’ Parent Rating
Scale–Revised hyperactivity T-score [children] and Barkley
self-report hyperactivity score [adults]).
In the comparison group, reaction timewas significantly

negatively correlated with activation in the right inferior
frontal cortex-superior temporal lobe (r=20.3, p,0.03),
the left inferior frontal cortex (r=20.3, p,0.05), and clusters
in the left middle frontal cortex (r=20.3, p,0.03). No sig-
nificant correlations between performance and activation
were observed in the ASD group.
In the ASD group, underactivation of the left inferior

frontal cortex was negatively correlated with ADOS com-
munication scores (r=20.32, p,0.03), and underactivation
of the right pallido-thalamic cluster was negatively
correlated with z-transformed ADHD scores (r=20.39,
p,0.008).
To investigate the possible impact of group perfor-

mance differences on group differences in brain acti-
vation and age correlations, we repeated both analyses
using performance-matched subgroups (N=78); all find-
ings remained identical except that the left middle frontal
cortex and a small left temporal cluster no longer differed
between subgroups (see Figures S4 and S5 in the online
data supplement).
Although motion did not differ between groups, to

assess the possible impact of motion on group differences
in activation or age correlation, we conducted a whole-
brain correlation analysis between maximum motion dis-
placement in the x, y, and z dimensions andbrain activation
for the 8-second versus 0.5-second contrast across all sub-
jects. Two clusters were correlated with motion, but they

did not overlap with the group differences in activation or
age correlations (see the online data supplement, including
Figure S6).

Discussion

To our knowledge, this is the first fMRI investigation of
differences in brain activation and cross-sectional func-
tional brain development between healthy adolescents
and adults with ASD relative to age- and IQ-matched typ-
ically developing comparison subjects during a sustained
attention task. Relative to comparison subjects, individuals
with ASD exhibited underactivation of left and right infe-
rior frontal cortical/superior temporal cortical, left middle
frontal cortical, striato-thalamic, and right lateral cerebellar
regions. Our key novel finding is that abnormal activation
in individuals with ASD in these areas was concomitant to
underlying abnormalities in their functional brain matura-
tion; with increasing age, the comparison group, but not
the ASD group, showed progressively greater activation
in these regions. Moreover, abnormal activation and
functional maturation in inferior frontal cortical/middle
frontal cortical/striato-thalamic regions in people with
ASD was associated with poorer task performance and
clinical measures of ASD and attention. These findings
offer cross-sectional evidence that functional abnormal-
ities in individuals with ASD during attention tasks may
be related to underlying differences in the dynamic ma-
turation of these functional networks between adoles-
cence and adulthood.
The ASD group had significantly slower reaction times

and larger intrasubject response variability, consistent with
previous findings in children and adults with ASD during
attention tasks (6, 9). Inconsistent response times are as-
sociated with sustained attention problems (39), while

TABLE 2. Analysis of Variance Group Differences in Brain Activation Between Individuals With Autism Spectrum Disorder
(ASD) (N=46) and Typically Developing Comparison Subjects (N=44) in a Sustained Attention Task

Brain Regions of Activation, Comparison Group .
ASD Group Brodmann’s Area Talairach Coordinates Number of Voxels Cluster p Value

Survived the conjunction analysis
Right inferior frontal cortex; superior, medial, temporal
lobe; globus pallidus; putamen; hippocampus

47/45/38/21/22 28, 0, –18 411 0.002

Left inferior frontal cortex, insula 46/47/45/46 –32, 29, –12 187 0.002
Left middle frontal gyrus 9/8/6 –25, 22, 36 193 0.003
Right and left thalamus, midbrain 18, –14, 3 103 0.05
Right and left cerebellar vermis and hemispheres 0, –22, –29 188 0.002
Did not survive the conjunction analysis
Left superior temporal lobe 38 –25, 29, –34 17 0.002
Left superior temporal, medial temporal lobe 38/21 –39, 14, –29 173 0.002
Left inferior temporal lobe, posterior insula, putamen,
caudate, nucleus accumbens, hippocampal gyrus

20/36 –28, –3, –12 283 0.02

Right posterior central gyrus, superior parietal lobe,
precuneus, posterior cingulate

5/7/31 25, –33, 42 116 0.003

Left posterior cingulate, precuneus, supplementary
motor area

31/7/6 –7, –33, 36 155 0.002

Right posterior cingulate, precuneus, supplementary
motor area

31/7/6 7, –25, 36 185 0.002
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slower reaction times with increasing task delays sug-
gest difficulties with sustained attention and stimulus
anticipation (40).

While comparison subjects showed progressively higher
activation across all delays in a typical sustained attention
network (left and right inferior frontal cortex; left middle
frontal cortex; striato-thalamic, superior temporal, and
inferior/superior-parietal regions; and lateral cerebellum)
(23), individuals with ASD had reduced activation in
these regions across all delays, a finding that extends to
adulthood previous evidence for lower activation in
these regions in children with ASD during sustained
attention (12).

Most of these activations in left and right inferior frontal
cortical, left middle frontal cortical, striato-thalamic, and
cerebellar regions also showed a significant linear age cor-
relation in the comparison group, supporting previous
developmental fMRI attention findings (24–26, 41), but not
in the ASD group. This demonstrates first cross-sectional

evidence that abnormal inferior frontal cortical/middle
frontal cortical-striato-thalamic and cerebellar brain acti-
vation in people with ASD during an attention task may
be caused by abnormal functional maturation of these
regions between childhood and adulthood. Furthermore,
left and right inferior frontal cortical/superior temporal
and left middle frontal cortical clusters that had lower
activation and were functionally more immature in the
ASD group were associated with better performance
(shorter reaction time) in the comparison group, but not
the ASD group. This suggests that in typically developing
individuals these regions are recruited to perform better
with increasing sustained attention/vigilance load, while
poor task performance in ASD may be due to poor re-
cruitment and “dysmaturation” of these frontal regions.
Specifically, the leftmiddle frontal cortex activation cluster
was likely associated with performance differences, as it
was no longer observed in performance-matched subgroups,
while the bilateral underactivation and dysmaturation in the

FIGURE 1. Horizontal fMRI Sections Showing Group Differences in Brain Activation Between Individuals With Autism
Spectrum Disorder (ASD) (N=46) and Typically Developing Comparison Subjects (N=44)a

A. Group Differences in the Sustained Attention Task

B. Group Differences in Whole-Brain Correlations Between Brain Activation and Age for the 8-Second Delay

C. Conjunction Analysis

–20 10 0 10 20 30 50 p value
0.050000

0.000082

–20 10 0 10 20 30 50 p value
0.050000

0.000082

–20 10 0 10 20 30 50 p value
0.050000

0.000082

a In panel A, the sections show analysis-of-variance (ANOVA) group differences in the sustained attention task for all long delays combined (2, 5,
or 8 seconds), each contrasted with the 0.5-second delay. Activation clusters in orange indicate regions where the ASD group had significantly
lower activation relative to the comparison group. No areas showed higher activation in the ASD group relative to the comparison group. In
panel B, the sections show group differences in whole-brain correlations between brain activation and age for the 8-second delay contrasted
with the 0.5-second delay. Activation clusters shown in orange are those where the comparison group showed progressively greater activation
with increasing age relative to the ASD group, which showed no significant age correlations in these regions. In panel C, the sections show
results of the conjunction analysis between the ANOVA of between-group differences for all long delays versus the 0.5-second delay (panel A)
and the group differences in whole-brain age correlations for the 8-second versus the 0.5-second delay (panel B). The resulting activation
clusters (in orange) show areas where the comparison group had higher activation relative to the ASD group for long versus short delays and
where, at the same time, activation was progressively correlated with increasing age in the comparison group but not in the ASD group
during the 8-second delay versus the 0.5 delay. Talairach z coordinates are indicated for slice distance (in mm) from the intercommissural
line. The right hemisphere corresponds to the right side of the image.
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inferior frontal cortex survived the performance-matched
subgroup analysis and may be more closely related to the
ASD phenotype. Finally, fMRI evidence for abnormal
functional maturation is reinforced by performance data,
which showed a significantly stronger negative correlation
between age and reaction time in the comparison group
but not the ASD group.

These inferior frontal cortical/middle frontal cortical,
superior temporal, striato-thalamic, and cerebellar at-
tention regions that showed abnormal activation and
functional maturation have also been shown to have
abnormal structure and development in ASD (19, 20,
42–44), with evidence of time-specific regional changes—
early abnormal overgrowth, followed by delayed growth

TABLE 3. Group Differences Between Individuals With Autism Spectrum Disorder (ASD) (N=46) and Typically Developing
Comparison Subjects (N=44) in Whole-Brain Correlations Between Brain Activation and Age for the 8-Second Delay and Age
Correlations

Age Correlation Between BBAM
Age Differences and Agea

Regions of Activation Brodmann’s Area
Talairach

Coordinates
Number
of Voxels

Cluster
p Value

Comparison Group ASD Group

Correlation p Correlation p

Survived the conjunction analysis
Right inferior frontal cortex,
insula, superior temporal
lobe

11/47/46/45/10/22 25, 59, –18 288 ,0.001 0.562 0.000** –0.515 ,0.001**

Left inferior frontal cortex 10/45/46/11/25 –43, 48, 3 264 ,0.001 0.335 0.026* –0.586 ,0.001**
Left middle frontal, inferior
frontal cortex

45/6 –50, 18, 20 43 ,0.001 0.161 0.296 –0.598 ,0.001**

Thalamus, putamen, globus
pallidus, hippocampal gyrus,
occipital lobe, posterior
cingulate, left cerebellum,
midbrain

19/39/31 –3, –48, 3 365 ,0.001 0.344 0.022* –0.572 ,0.001**

Right cerebellar hemisphere 18, –44, –23 76 ,0.001 –0.116 0.452 –0.637 ,0.001**
Did not survive the conjunction analysis
Right medial frontal gyrus 9 7, 59, 31 214 ,0.001 0.375 0.012* –0.508 ,0.001**
Right rostral medial frontal
gyrus

11 7, 74, –12 13 0.001 0.253 0.097 –0.394 0.007**

Left premotor gyrus 6 –43, –14, 64 17 0.001 0.153 0.321 –0.379 0.009*
Right supplementary motor
area

6 3, –22, 69 59 ,0.001 0.221 0.149 –0.486 0.001**

Left superior temporal lobe 38 –25, 3, –34 36 ,0.001 0.129 0.404 –0.422 0.004**
Right superior temporal gyrus 22 61, 7, 3 14 0.002 0.203 0.186 –0.348 0.018*
Right middle temporal gyrus 21 50, –33, 3 20 ,0.001 0.325 0.032* –0.209 0.162
Left middle temporal gyrus 39 –46, –59, 25 22 ,0.001 0.537 0.000 0.019 0.898
Left precuneus 7 –14, –74, 47 91 ,0.001 0.370 0.013* –0.550 ,0.001**
Right inferior parietal lobe 40 46, –22, 36 19 0.002 0.138 0.371 –0.461 0.001**
Left inferior parietal lobe 40 –36, –29, 25 107 ,0.001 –0.010 0.947 –0.571 ,0.001**
Right uncus 36 7, –7. –29 14 ,0.001 –0.006 0.971 –0.462 0.001**
Right occipital gyrus 19 32, –88, 9 51 ,0.001 0.262 0.086 –0.662 ,0.001**
Left cuneus 18 –21, –92, 9 15 0.004 0.215 0.160 –0.467 0.001**
Midbrain –10, –18, –34 10 0.008 0.080 0.608 –0.481 0.001**
Right cerebellar vermis 7, –51, –40 23 ,0.001 0.122 0.430 –0.478 0.001**
a Age correlation between group differences in whole-brain correlations between brain activation and age (for the 8-second delay) and age in
months. The maps are thresholded to give less than one type I error cluster per map.

* p,0.05. **p,0.01.

TABLE 4. Conjunction Analysis of Group Differences in Brain Activation and Group Differences in Whole-Brain Age
Correlations in Individuals With Autism Spectrum Disorder (N=46) and Typically Developing Comparison Subjects (N=44)

Regions of Activation Brodmann’s Area Talairach Coordinates Number of Voxels

Right inferior frontal cortex, superior temporal lobe,
putamen

47/45/44/21/22 37, 9, –18 78

Left inferior frontal cortex 47 –32, 29, –12 26
Left middle, inferior frontal cortex 46/45 –43, 48, 3 28
Right thalamus, globus pallidus, midbrain 18, –14, 3 53
Right cerebellum 18, –44, –23 7

Am J Psychiatry 171:10, October 2014 ajp.psychiatryonline.org 1113

MURPHY, CHRISTAKOU, DALY, ET AL.

http://ajp.psychiatryonline.org


in adolescence and adulthood, particularly in frontal and
temporal regions (18, 45).

Our cross-sectional findings of abnormal functional
maturation in inferior frontal cortical/middle frontal cor-
tical, superior temporal, pallido-thalamic, and lateral ce-
rebellar regions in ASD are the first to extend evidence of
a postadolescent abnormal structural maturation in these
regions in ASD (17, 19, 20, 44) to functional brain matu-
ration. Interestingly, the regions found to be delayed in
functional maturation in ASD are more susceptible to de-
velopmental delay, since they continue to develop across
late adolescence into mid-adulthood (46).

We also showed a correlation between the attention-
mediating left middle frontal cortex (lower in both acti-
vation and neurofunctional development in the ASD
group) and ADOS communication score, supporting the
suggestion that attention contributes to the cognitive-
behavioral phenotype of ASD (2). Additionally, the under-
activated left middle frontal cortical and left and right
inferior frontal cortical-striatal clusters were correlated
with better attention performance (shorter reaction time)
in comparison subjects, suggesting an association in ASD
between communication difficulties, poor attention per-
formance, and underactivation and dysmaturation in the
leftmiddle frontal cortex/inferior frontal cortex. Intriguingly,
the leftmiddle frontal cortex, while crucial for attention (47),
has also been associated with social cognition and commu-
nication (48).

Interestingly, only the underactivationof the right pallido-
thalamic cluster correlated negatively with z-transformed
ADHD scores in the ASD group. Striatal dysfunctions are
key to ADHD (49) and may be shared between ADHD and
ASD (12), possibly explaining the high overlap of attention
problems. Furthermore, left middle frontal cortical and
striato-thalamic underactivation was observed during the
same task in both children with ADHD and children with
ASD (12). Sustained attention has major implications for
learning and executive function (50), matures late in ado-
lescence (51), and is a key cognitive impairment not only in
ASD but also in numerous psychiatric disorders, particu-
larly ADHD (49). To our knowledge, however, there have
been no cross-sectional or longitudinal fMRI studies in
related psychiatric disorders. Future cross-sectional and
longitudinal studies should investigate the specificity of
the developmental underpinnings of attention deficits
across disorders.

Limitations

Study limitations include the cross-sectional design,
which is confounded by cohort effects; possible task
confounding between trial duration and predictability;
and a lack of measures of pubertal development. Only
high-functioning males with ASD were included, which
limits generalizability, and some people in our ASD group
scored high on ADHD measures despite not having a
clinical ADHD diagnosis. Although the findings survived

the performance-matched subanalysis, we cannot rule out
confounding due to subtle nonsignificant group differences
in performance or strategies. A strength of the study is the
relatively large sample of physically healthy, medication-
naive, clearly diagnosed individuals with ASDwithout other
psychiatric diagnoses and a 25-year age range from child-
hood to adulthood.

Conclusions

This cross-sectional developmental fMRI study demon-
strates that both poor performance and underactivation of
inferior frontal cortical/middle frontal cortical, superior
temporal, striatal, and lateral cerebellar attention regions
in individuals with ASD relative to comparison subjects are
due to abnormal maturation of performance and functional
brain development in these regions between childhood and
adulthood, and are associated with clinical symptoms of
ASD and inattention. This may underlie the pervasive at-
tention difficulties across the lifespan for people with ASD.
Our findings suggest that dynamic developmental ap-
proaches are crucial to enable better understanding of brain,
cognition, and behavior in ASD. Longitudinal studies should
determine the development of attention networks across the
lifespan for peoplewithASDand identify effective, early, age-
appropriate treatment (cognitive, behavioral, and/or phar-
macological) targeting these systems.
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