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Background. Increasing evidence suggests that autism is associated with abnormal white-matter (WM) anatomy and
impaired brain ‘connectivity’. While myelin plays a critical role in synchronized brain communication, its aetiological
role in autistic symptoms has only been indirectly addressed by WM volumetric, relaxometry and diffusion tensor
imaging studies. A potentially more specific measure of myelin content, termed myelin water fraction (MWF), could
provide improved sensitivity to myelin alteration in autism.

Method. We performed a cross-sectional imaging study that compared 14 individuals with autism and 14 age- and
IQ-matched controls. T1 relaxation times (T1), T2 relaxation times (T2) and MWF values were compared between autistic
subjects, diagnosed using the Autism Diagnostic Interview – Revised (ADI-R), with current symptoms assessed using the
Autism Diagnostic Observation Schedule (ADOS) and typical healthy controls. Correlations between T1, T2 and MWF
values with clinical measures [ADI-R, ADOS, and the Autism Quotient (AQ)] were also assessed.

Results. Individuals with autism showed widespread WM T1 and MWF differences compared to typical
controls. Within autistic individuals, worse current social interaction skill as measured by the ADOS was related to
reduced MWF although not T1. No significant differences or correlations with symptoms were observed with respect
to T2.

Conclusions. Autistic individuals have significantly lower global MWF and higher T1, suggesting widespread alteration
in tissue microstructure and biochemistry. Areas of difference, including thalamic projections, cerebellum and cingulum,
have previously been implicated in the disorder; however, this is the first study to specifically indicate myelin alteration
in these regions.
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Introduction

Autism spectrum disorder (ASD) is characterized by
impairments in social interaction, communication and
emotional processing, as well as by restrictive, stereo-
typed and repetitive behaviours and interests. There
is increasing evidence that these symptoms have a bio-
logical basis. Individuals with autism show evidence
of altered structural and functional ‘connectivity’ across
large-scale brain systems (Koshino et al. 2005; Alexander

et al. 2007; Ben Bashat et al. 2007; Keller et al. 2007; Lee
et al. 2007; Jones et al. 2010; Weng et al. 2010). This ab-
errant brain messaging may be related to, or mirrored
by, altered brain development (Courchesne, 2004;
Herbert et al. 2004; Courchesne et al. 2005) and differ-
ences in structural white and grey matter (Boddaert
et al. 2004; McAlonan et al. 2005). A recurrent finding
in children with ASD is that of increased overall brain
volume, which has been suggested to result from differ-
ences in earlybraindevelopment (Courchesne et al.2001,
2007;Hazlett et al. 2005;Koshino et al. 2005;Wassink et al.
2007) and may be caused by differential effects driving
white matter (WM) to be larger in the autistic brain.
Specifically, those brain regions exhibiting the greatest
volume increases correspond to later and prolonged
myelinating pathways (Abell et al. 1999; Aylward et al.
2002; Carper & Courchesne, 2005). Further (Catani
et al. 2008; Fields, 2008), these WM volume differences
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persist into young adulthood and extend fronto-
temporally and fronto-occipitally within connecting
fibre tracts including the inferior and superior longi-
tudinal fasciculi, occipitofrontal fasciculus, and the
external capsule.

The first signs of autism usually present in the first
3 years of life, and this time-frame corresponds temp-
orally with the most dynamic period of brain myelina-
tion. The elaboration of the myelin sheath along
WM axons and development of the myelinated WM
progresses rapidly over the first 2 years of life
(Waber et al. 2007; Deoni et al. 2012), and is tempo-
spatially associated with evolving cognitive and behav-
ioural functioning (Nagy et al. 2004; Johnson et al.
2005). Myelin plays a critical role in establishing and
maintaining congruent brain communication, and con-
tributes substantively to WM volume. Histological evi-
dence for abnormal myelination, myelin content, or
myelin structure in the pathogenesis of ASD is derived
from ex vivo post-mortem studies showing altered
myelin composition with delayed compaction in the
sheaths (Casanova, 2004, 2006; Palmen et al. 2004;
Buxhoeveden et al. 2006). Insufficient compaction of
the lipid myelin bilayers, or compositional irregularity,
can diminish the conductive potential of the myeli-
nated axon and result in uncoordinated information
transfer. To date, however, in vivo investigations of my-
elin alteration in autism [and its possible relationship(s)
to clinical symptomology] have been indirect. For
example, findings of some magnetic resonance spec-
troscopy studies are consistent with altered phospholi-
pid metabolism in prefrontal brain regions (Murphy
et al. 2002; Carper & Courchesne, 2005). Studies of
WM microstructure and micro-organization using dif-
fusion tensor (DT)-MRI and relaxation time measure-
ments (also termed relaxometry) have also provided
indirect support for altered myelin content and struc-
ture. Cross-sectional DT-MRI studies have reported
alterations in WM fractional anisotropy (FA), as well
as mean and radial diffusivity (although considerable
heterogeneity exists in the anatomical location of
these differences), which may be related to altered
myelin integrity alongside changes in fibre coherence
and architecture. Developmentally, FA has also been
reported to increase more slowly between 6 and 24
months of age in infants later diagnosed with autism
(despite having increased FA at 6 months) (Wolff
et al. 2012). Voxel-wise comparisons of T2 and T2*
relaxation times (Hendry et al. 2006) revealed an overall
increase in cerebral WM T2 in patients with autism.
Regionally, T2 was increased in associated WM of the
bilateral primary sensory association areas in the par-
ietal lobes, the visual association areas in the occipital
lobes, and the WM underlying the supplementary
motor areas (SMAs) in the frontal lobes. These observed

T2 increase could reflect reduced myelin content,
and correspondingly increased water content, in the
ASD brain.

These studies represent important steps in elucidat-
ing microstructural abnormalities in the ASD brain.
Although indirect, taken together, they support the
suggestion that individuals with ASD have abnormali-
ties in brain WM (and specifically myelin content) that
may underpin some symptoms. However, to date, this
hypothesis has not been directly tested in vivo due to
the difficulty in specifically and quantitatively measur-
ing myelin content (Beaulieu, 2002; Madler et al. 2008).
For instance, while alterations in myelin content may
influence DT-MRI and relaxation-time measurements,
these are not specific or quantitative measures of my-
elin content as they also reflect other biophysical and
biochemical features (e.g. water content, fibre architec-
ture, density and coherence, and/or membrane per-
meability). Currently, the most robust approach to
quantitatively estimating myelin content is through
multi-component relaxation analysis (MCR) (Whittall
et al. 1997). Within brain tissue, MCR aims to decom-
pose the measured MR signal into contributions from
two anatomically distinct water compartments: the
slow relaxing intra- and extra-axonal water; and the
faster relaxing water trapped between the myelin
bilayers. Using MCR an estimate of the myelin-
associated water pool’s volume fraction, termed the
myelin water fraction (MWF) is derived, which has
been shown to correlate strongly with ‘gold standard’
histological estimates of myelin content (Beaulieu
et al. 1998; Gareau et al. 2000; Webb et al. 2003; Laule
et al. 2006, 2008). MCR has been used to investigate
demyelinating disorders such as multiple sclerosis
(MacKay et al. 2009; Kitzler et al. 2012; Kolind et al.
2012), as well as neurodevelopment in infants, toddlers
and young children (Deoni et al. 2011, 2012).

We are the first to use a time-efficient MCR tech-
nique, termed mcDESPOT (multi-component-driven
equilibrium singl- pulse observation of T1 and T2)
(Deoni et al. 2008), to compare MWF estimates in
young adults with ASD and matched typically de-
veloping controls. We tested the main null hypothesis
that people with autism exhibit no differences in MWF.
We also tested the subsidiary null hypothesis that
differences in brain MWF are not associated with
variation in clinical symptoms. In addition to MWF,
mcDESPOT also provides quantitative T1 and T2

relaxation-time estimates. We therefore tested the
main and subsidiary null hypotheses using these mea-
sures to determine if prior studies of T2 change in ASD
(Hendry et al. 2006) were linked to alterations in my-
elin, or if they reflected changes in other tissue micro-
structure and biochemical features (i.e. iron content,
water content, etc.).
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Methods and materials

Participants

Fourteen adult males with ASD and 14 healthy com-
parison male subjects (who did not differ significantly
in age or IQ) were recruited into the study. All par-
ticipants had a full-scale IQ <70 as measured by the
Wechsler Abbreviated Scale of Intelligence (WASI;
Wechsler, 1999). Participants with ASDwere diagnosed
according to ICD-10 research criteria (International
Statistical Classification of Diseases and Health Related
Problems – 10th revision;WHO, 2004) The initial clinical
diagnosis was confirmed using the Autism Diagnostic
Interview – Revised (ADI-R; Lord et al. 1994) and cur-
rent symptoms were assessed using the Autism
Diagnostic Observation Schedule (ADOS; Lord et al.
1989). All cases reached ADI-R algorithm cut-offs in
the three domains of impaired social interaction, com-
munication and repetitive behaviours and stereotyped
patterns (see Table 1 for details). In addition, autistic
traits were assessed in all participants using the
Autism Quotient (AQ) – a self-report screening instru-
ment that measures where an adult with normal
intelligence lies on the continuum from autism to nor-
mality (Baron-Cohen et al. 2001; Woodbury-Smith et al.
2005).

Exclusion criteria for participants included: left
handedness, history of intellectual disability (i.e. full-
scale IQ <70), major psychiatric disorder (e.g. psychosis
or the use of antipsychotic medication), head injury,

genetic disorder associated with autism (e.g. fragile X
syndrome, tuberous sclerosis), or any other medical
condition affecting brain function (e.g. epilepsy).

The study was approved by the National Research
Ethics Committee, Suffolk. Informed written consent
was obtained from all study participants.

Magnetic resonance imaging

Voxel-wise MWF maps were acquired of each parti-
cipant using the mcDESPOT technique (n=46), which
involves the acquisition of series of T1-weighted
SPoiled GRadient recalled echo (SPGR, or spoiled
FLASH) and T1/T2-weighted balanced steady-state
free precession (SSFP, FIESTA or TrueFISP) data over
an incremented range of flip angles.

All imaging was performed on a GE Signa HDx 1.5 T
clinical scanner equipped with an 8-channel head RF
coil array. Whole-brain, sagittally oriented mcDESPOT
data were acquired with a common 22 cm×22 cm×
16 cm field of view (FOV) and 128×128×92 imaging
matrix. To reduce acquisition time, data were acquired
with 3/4 partial Fourier acquisition. Sequence-specific
acquisition parameters were as follows:

SPGR. Echo time (TE)/repetition time (TR)=2.5 ms/5.3
ms, flip angles (α) =3°, 4°, 5°, 6°, 7°, 9°, 12° and 17°, re-
ceiver bandwidth (BW)=±22.3 kHz.

SSFP. TE/TR=1.6 ms/3.2 ms, α=12°, 16°, 21°, 27°, 33°,
40°, 5°1 and 68°, BW=±50 kHz.

Table 1. Summary of subject characteristics including age, and verbal IQ, performance IQ, and full-scale IQ scores (VIQ, PIQ, and FSIQ) as
derived from the Wechsler Abbreviated Scale of Intelligence (WASI). All subjects were right-handed males. Means and standard errors of the
mean (S.E.M.) are given; between-group differences in age, VIQ, PIQ, FSIQ, AQ, empathy quotient (EQ) and systemizing quotient (SQ) scores
were calculated using t tests

ASD individuals
(N=14) Controls (N=14) Statistic

Significance
(two-tailed)

Age, years (S.E.M.) 24.2 (1.21) 27.9 (1.55) t=−1.920, df=28 p=0.065
FSIQ (S.E.M.) 107.1 (3.40) 109.3 (3.80) t=−0.419, df=28 p=0.679
PIQ (S.E.M.) 105.7 (3.70) 110.7 (3.51) t=−1.099, df=28 p=0.281
VIQ (S.E.M.) 105.7 (4.1) 106.6 (3.51) t=−0.351, df=28 p=0.728
AQ (S.E.M.) 28.08 (2.77) 11.29 (1.33) t=5.602, df=28 p<0.000
EQ (S.E.M.) 24.62 (3.23) 46.23 (3.42) t=−4.60, df=28 p<0.000
SQ (S.E.M.) 55.67 (6.97) 54.83 (5.29) t=−0.14, df=28 p=0.9

ADOS (total) 11 (3.8)
Communication (ADOS) 3.75 (0.44)
Social interaction (ADOS) 7.67 (0.78)
Repetitive behaviour (ADOS) 1.67 (0.052)

ADI-R
Communication (ADI-R) 12.86 (3.9)
Social interaction (ADI-R) 17.64 (4.2)
Repetitive behaviour (ADI-R) 4.7 (1.5)

ADOS, Autism Diagnostic Observation Schedule; ADI-R, Autism Diagnostic Interview – Revised.
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The SSFP data were acquired with two phase-cycling
increments (0° and 180°), allowing correction for main
magnetic field (B0) off-resonance effects (Deoni, 2009).
An inversion prepared (IR-)SPGR image was also
acquired (same FOV, 128×64×46 acquisition matrix,
TE/TR/inversion time/α=2.5ms/5.3 ms/350ms/5°; and
BW=±22.3 kHz) to correct for flip angle (B1) inhomo-
geneity (Deoni, 2007).

Data analysis

T1, T2 and MWF calculation

Following acquisition, each participant’s data were
linearly co-registered to correct for subtle intra-session
motion (Jenkinson et al. 2002), non-parenchyma signal
was removed (Smith, 2002), and voxel-wise T1, T2 and
MWF estimates were calculated as described in Deoni
et al. (2013), providing 3-dimensional ‘maps’ of these
parameters. These maps from each participant were
then nonlinearly co-registered to custom T1-weighted
template constructed from a subsample of six healthy
and six ASD participants. This template was created
from the high flip angle T1-weighted SPGR image of
each included participant using symmetric diffeomor-
phic normalization (SyN; Avants et al. 2008) as imple-
mented in the ANTs package, and a cross-correlation
similarity measure (http://picsl.upenn.edu/ANTS),
using the buildtemplateparallel.sh script distributed
with the ANTs package (Avants et al. 2010). Subsequent
registration of each study participant’s MWF, T1 and
T2 maps to the common template was accomplished by
first nonlinearly co-registering each participant’s high
flip angle T1-weighted SPGR image to the common tem-
plate and then applying the calculated transformation
matrix to the corresponding T1, T2 and MWF maps.

Group-wise comparisons of T1, T2 and MWF

Group-wise comparison of T1, T2 and MWF between
the ASD and matched typically developing controls
was performed via voxel-wise unpaired two-tailed
t tests, with cluster-based correction for multiple com-
parisons and false discovery. A 3mm full-width-at-
half-maximum Gaussian kernel was used to smooth
the T1, T2 and MWF data, and non-parametric permu-
tation testing used to perform the group comparison
(performed using the randomize tool included in the
FMRIB Software Library; http://www.fmrib.ox.ac.uk/
fsl/). Cluster-based correction was performed using
a cluster threshold of 2.5. Significance was defined as
p<0.05, cluster corrected.

Correlations between T1, T2 and MWF and symptom
measures

To examine the subsidiary hypothesis that altered T1,
T2 and/or MWF are associated with autism spectrum

traits, voxel-wise correlation analysis was performed
in ASD individuals between T1, T2 and MWF, and
total ADOS scores, as well as the communication,
social and repetitive domains subscores; ADI-R com-
munication, social, repetitive, and developmental do-
main subscores; and total AQ scores.

Similar correlation analysis was also performed
between T1, T2 and MWF, and total AQ score within
the typically developing control group only. Finally,
correlations between T1, T2 and MWF, and total
AQ score were investigated in the combined ASD+
typically developing control group.

All correlation analysis was performed via the ran-
domize tool using non-parametric testing, with cluster-
based correction for multiple comparisons (threshold=
2.5) and statistical significance was defined as p<0.05,
cluster corrected.

Results

Demographic data (Table 1)

A summary of the healthy and ASD cohorts, including
mean age, verbal IQ, performance IQ, full-scale IQ,
AQ, as well as ADOS and ADI-R total and subscore
measures are provided in Table 1.

The groups did not differ significantly in mean
age, full-scale, verbal, or performance IQ scores. As
expected, ASD subjects had significantly higher AQ
scores relative to the healthy participants.

Mean cerebral and cerebellar volumes and total
WM volumes did not differ significantly between indi-
viduals with autism and healthy controls (Table 2).

Group-wise comparisons of T1, T2 and MWF (Fig. 1)

Widespread differences in MWF (all significantly
reduced in individuals with ASD compared to controls)
and T1 (all significantly increased in individuals with
ASD compared to controls) were found. No significant
differences in T2 were observed. From the MWF results,
significantly (p<0.05) reduced MWF was observed in
ASD individuals bilaterally within the cerebellum,
thalamus, internal capsule, caudate nuclei, temporal
and occipital WM, the SMA and pre-SMA, and cingu-
lum; and right frontal WM. Significantly (p<0.05)
increased T1 was observed in ASD individuals bilater-
ally within the cerebellum, thalamus, and internal cap-
sule; and in right temporal and occipital WM.

Correlations between T1, T2 and MWF and symptom
measures (Figs 2 and 3)

Within individuals with ASD, there was a significant
(p<0.05) negative correlation between: (1) total ADOS
score and MWF (i.e. lower MWF was associated with
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more abnormal current behaviour) bilaterally in the
thalamus and caudate; and in the right frontal lobe
and external capsule (Fig. 2); (2) negative correlation
between ADOS social interaction subscore and MWF
bilaterally in the thalamus; and in the right temporal
and frontal lobes and cingulum (Fig. 2); and (3) negative
correlation between AQ score and MWF in the right

cerebellum, occipital lobe and superior corona radiata
(Fig. 2). We found no significant associations between
MWF and ADI or any other subscales of the ADOS
or ADI. We found no significant associations between
T1 or T2 and any ADI, ADOS or AQ measure.

When we examined the dimensional relationship
between autistic traits and MWF across all individuals

Fig. 1. Groupwise myelin water fraction (MWF), T1 and T2 comparisons between individuals with autism spectrum disorder
(ASD) and healthy controls. Individuals with ASD show widespread significant (p<0.05) reductions in MWF, with associated
increased T1. No significant differences were observed in T2.

Table 2. Summary of mean volumes (ml) with standard deviations (S.D.) and between-group
differences calculated using t tests

Patients (N=14)
Controls
(N=14)

Significance
(two-tailed)

Cerebrum (S.D.) 569.10 (41.34) 556.21 (32.25) p=0.37
Left cerebellum (S.D.) 17.12 (3.75) 16.05 (2.63) p=0.39
Right cerebellum (S.D.) 16.22 (3.74) 15.24 (2.16) p=0.41

Total white matter (S.D.) 602.44 (46.31) 587.50 (34.66) p=0.34
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(i.e. combining ASD and typically developing parti-
cipants), we found a significant (p<0.05) negative corre-
lation between MWF and AQ score bilaterally in the
thalamus and cerebellum (Fig. 3). No significant corre-
lations were found between either T1 or T2 and AQ
score in the combined group.

Discussion

In this work, we have examined if individuals with
ASD have significant differences in brain myelin con-
tent, or MWF, and if these differences may, in part,
explain prior findings of T2 relaxation time differences
in ASD. This is the first study to use a whole-brain

multicomponent relaxometry approach to more spe-
cifically interrogate myelin content differences in
ASD. While the number of participants in the study
was small (14 in each group), the individuals with
autism were free of many potential confounds that
affect brain structure and function (e.g. epilepsy and/
or intellectual disability). This homogeneous sample
provided sufficient power to detect highly significant
group differences.

Our results show that individuals with autism have
widespread MWF reductions in brain regions pre-
viously implicated in ASD. Increased T1 was also
found in areas exhibiting lower MWF measures; how-
ever, the extent of T1 differences was smaller than

Fig. 2. Areas of significant (p<0.05) negative correlation between myelin water fraction (MWF) and Autism Diagnostic
Observation Schedule (ADOS) total score; MWF and ADOS social interaction subscore; and MWF and Autism Quotient
(AQ) score with the autism spectrum disorder (ASD) subjects only. In these regions, reduced MWF is associated with more
abnormal behaviour.
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MWF differences. No group T2 differences were found.
Spatial inconsistencies in MWF, T1 and T2 changes
reaffirm that these measures reflect different aspects
of tissue microstructure. While both T1 and T2 are af-
fected by changes in water, macromolecule, lipid and
protein content, T2 is also sensitive to changes in iron
and other paramagnetic material content. MWF is be-
lieved to be more specific to changes in lipid myelin
content. Our observation of T1 and MWF differences
suggests that myelin lipid and water content are
altered in ASD (Alexander et al. 2011).

Within the ASD group, a significant negative corre-
lation was found between MWF and the social domain
of the ADOS in regions that are known to be involved
in social processing. Previous DT-MRI studies of struc-
tural connectivity have, likewise, shown abnormal
WM microstructure in pathways through, or connect-
ing, these regions (Cheng et al. 2010). The absence of
a similar finding with respect to ADI-R scores is likely
reflective of the ADOS measuring current behaviour,
whereas the ADI-R is mainly a measure of past
behaviour.

Our findings of widespread disturbances in WM
myelin content are consistent with, and add to, prior
reports of WM alterations in autism. DT-MRI studies
have shown reduced FA (an indicator of microstruc-
tural coherence) in the corpus callosum, internal
capsule, and other WM regions (e.g. see Courchesne,
2004; Herbert et al. 2004; Courchesne et al. 2005; Jones
et al. 2010, among others). Voxel-based morphopmetric
analyses have reported widespread differences in WM
volume (or density) (Ben Bashat et al. 2007; Lee et al.
2007). Unfortunately, relating these observed FA or
morphometric findings to specific WM disruptions
(i.e. myelin loss, reduced axonal size or density, etc.)
has been challenging. Alterations in FA, for example,
can reflect changes in myelin, fibre coherence, density,
etc. Likewise, alterations in WM density can reflect

fibre density and water content (Beaulieu, 2002),
as well as inconsistencies in MR tissue contrast. Thus,
while these prior studies have consistently demon-
strated altered WM in autism, they have been unable
to elucidate the particular mechanism(s) responsible.
Our results are the first to specifically investigate the
role of myelin in autism, and to link observed changes
in MWF to autistic traits and symptoms.

The development of myelin (myelination) plays a
critical role in brain development. The formation of
efficient information pathways throughout the brain
is essential for normal function, cognition and behav-
iour. Our study has revealed widespread myelin alter-
ation through MWF reduction in the brain of adults
with autism. However, a limitation of our cross-
sectional study design is that we cannot state when
these deficits first arose, or whether they are secondary
to other pathological processes. For example, prema-
turity, low birth weight, and ischaemic injury at birth
have all been associated with WM microstructural
changes, as assessed with DT-MRI, in later life
(Skranes et al. 2007; Allen, 2008; Constable et al. 2008;
Rose et al. 2008). However, to the best of our knowl-
edge, no in vivo study has yet investigated brain
myelination in children or adults who had these birth
difficulties and, thus, how myelination is affected. To
investigate these crucial questions, longitudinal studies
of myelination in typically developing children and
children at risk for autism, controlling for prematurity,
etc., are required.

Associations between myelin development and the
genetic and epigenetic factors contributing to autism
also warrant further investigation. For example,
knowledge of the timing, location and degree to
which gene expression is disrupted in the pathway to
the development of ASD is crucial for developing
therapeutic strategies (Geschwind & Levitt, 2007). To
date, however, few human studies have investigated

Fig. 3. Areas of significant (p<0.05) negative correlation between myelin water fraction (MWF) and Autism Quotient (AQ)
scores in the combined autism spectrum disorder (ASD) plus control subjects. In these areas, reduced MWF is associated with
higher AQ scores.
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myelin-associated genes, including myelin basic pro-
tein (MBP), proteolipid protein (PLP) or myelin
oligodrendrocyte glycoprotein (MOG), in ASD.
Animal studies, however, have shown the expression
of genes associated with MBP, MOG and PLP are
altered following prenatal viral infection, which some
have reported as being associated with the develop-
ment of autism (Fatemi et al. 2009). Additionally, the
SLC25A12 (solute carrier family 25 member 12) gene,
identified by some as an autism susceptibility gene
(Ramoz et al. 2004), has recently been associated
with global hypomyelination (Wibom et al. 2009).
Although preliminary, these reports suggest the need
for further combined imaging and genetic studies of
myelination in ASD.

A further question not addressed in our work is
whether the detected MWF abnormalities are causative
of observed clinical deficits, or if they are symptoms of
other pathological processes. For example, myelination
of the brain in early infancy is believed to follow a
pattern that spatially and temporally corresponds to
the developing neuronal systems (Paus et al. 2001;
Durston & Casey, 2006). However, it is not yet
known if, for example, abnormal myelination of
language pathways results in poor language perform-
ance, or if inadequate learning of language results in
under-myelination of those neural pathways. Again,
understanding of these relationships, and how they
are affected in ASD, necessitates longitudinal studies
of young children with autism or infants at risk of
developing the disorder.

Our results, however, do show that autistic traits are
associated with lower MWF measures within relevant
WM pathways and are consistent with prior reports
of microstructural abnormality and hypothesized ab-
errant connectivity. Myelin plays a critical role in facil-
itating coordinated information transfer throughout
the brain (as evidenced by the loss of function and cog-
nition observed in demyelinating disorders such as
multiple sclerosis). Altered myelin, therefore, is likely
associated with reduced connectivity. Our results are
consistent with the current hypothesis that neural dis-
connectivity underpins ASD (Belmonte et al. 2004;
Alexander et al. 2007; Hughes, 2007; Kleinhans et al.
2008), as supported by structural imaging studies
(Barnea-Goraly et al. 2004; Ben Bashat et al. 2007); func-
tional imaging studies (Castelli et al. 2002; Villalobos
et al. 2005; Weng et al. 2010); and electroencepha-
lography investigations (Grice et al. 2001; Brown et al.
2005). In each of these prior studies, abnormal connec-
tivity was observed in frontal and temporal regions,
consistent with our findings of lower myelin content
in these areas.

In conclusion, the results of our study demonstrate
for the first time that adults with ASD have highly

significant (widespread) differences in myelin content
(as measured by MWF) compared to age- and
IQ-matched controls; and that differences in myelin
content in some brain regions are related to clinical
symptoms and autistic traits.

Appendix

The MRC AIMS Consortium is a collaboration of aut-
ism research centres in the UK including the Institute
of Psychiatry, London, The Autism Research Centre,
University of Cambridge, and the Autism Research
Group, University of Oxford. It is funded by the
Medical Research Council (MRC) UK and headed by
the Department of Forensic and Neurodevelopmental
Sciences, Institute of Psychiatry. The Consortium mem-
bers are (in alphabetical order): Bailey AJ, Baron-Cohen
S, Bolton PF, Bullmore ET, Carrington S, Chakrabarti
B, Daly EM, Deoni SC, Ecker C, Happe F, Henty J,
Jezzard P, Johnston P, Jones DK, Lombardo M,
Madden A, Mullins D, Murphy CM, Murphy DG,
Pasco G, Sadek S, Spain D, Steward R, Suckling J,
Wheelwright S and Williams SC.
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