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a b s t r a c t

Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often
comorbid and share cognitive abnormalities in temporal foresight. A key question is whether shared
cognitive phenotypes are based on common or different underlying pathophysiologies and whether
comorbid patients have additive neurofunctional deficits, resemble one of the disorders or have a
different pathophysiology. We compared age- and IQ-matched boys with non-comorbid ADHD (18),
non-comorbid ASD (15), comorbid ADHD and ASD (13) and healthy controls (18) using functional
magnetic resonance imaging (fMRI) during a temporal discounting task. Only the ASD and the comorbid
groups discounted delayed rewards more steeply. The fMRI data showed both shared and disorder-
specific abnormalities in the three groups relative to controls in their brain-behaviour associations.
The comorbid group showed both unique and more severe brain-discounting associations than controls
and the non-comorbid patient groups in temporal discounting areas of ventromedial and lateral
prefrontal cortex, ventral striatum and anterior cingulate, suggesting that comorbidity is neither an
endophenocopy of the two pure disorders nor an additive pathology.
& 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Autism Spectrum Disorders (ASD) are defined by abnormalities
in social interaction, communication, and stereotyped/repetitive
behaviours (http://www.dsm5.org). Attention Deficit Hyperactivity
Disorder (ADHD) is defined by age-inappropriate inattention,

impulsiveness and hyperactivity (http://www.dsm5.org). About 30%
of ASD patients have comorbid ADHD and ASD (Simonoff et al.,
2008). Children with the comorbid disorder often have a primary
diagnosis of ASD with clinically significant levels of ADHD symptoms,
particularly hyperactivity. However, there are also comorbid children
with a primary ADHD diagnosis and significant social interaction
problems (Kochhar et al., 2011; Mayes et al., 2012; van der Meer et
al., 2012). ADHD and ASD share deficits in executive functions (EF),
such as planning, decision making, inhibition, and working memory
(Rommelse et al., 2011). More recently, patients with ADHD and ASD
have been shown to have deficits also in so-called “hot” executive
functions involving reward-related decision making as measured by
tasks of gambling, reward processing, and temporal discounting,
with deficits mainly being observed in the ADHD group during the
temporal discounting task (Scheres et al., 2008; Kohls et al., 2011,
2013; Noreika et al., 2013).

Neuroimaging studies have shown that ADHD is characterised
by a delay in normal brain structure development and by
multisystem structural and functional abnormalities in
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fronto-striato-cerebellar networks that mediate these executive
functions (Nakao et al., 2011; Hart et al., 2012, 2013; Shaw et al.,
2013; Rubia et al., 2014). ASD is characterised by most prominent
abnormalities in fronto-temporo-limbic structures that mediate
socio-emotional and affective processes (Di Martino et al., 2009;
Minshew and Keller, 2010; Philip et al., 2012). Electrophysiological
studies of attention, inhibition and face processing in comorbid
ASD–ADHD boys have found combinations of the neurophysiolo-
gical abnormalities that are observed in pure ADHD and pure ASD
(Tye et al., 2013). However, to our knowledge, no functional
magnetic resonance imaging (fMRI) study has compared the pure
and comorbid disorders.

ADHD patients are particularly impaired in temporal discount-
ing tasks where subjects have to choose between a smaller
immediate reward and a larger reward that is given in a future
time. Temporal discounting refers to the psychological phenom-
enon that rewards that are given in the future lose some of their
subjective “reward value” relative to immediate rewards, a loss
that is proportionate to the time a subject has to wait for the
reward. Temporal discounting tasks therefore measure the degree
to which a reward is discounted in relation to its temporal delay,
i.e., the subjective value of the temporal delay in terms of reward.
The task requires the inhibition of the immediate reward and
temporal foresight in order to assess the larger future against the
smaller immediate gain (Luhmann, 2009; Rubia et al., 2009; Kim
and Lee, 2011; Noreika et al., 2013). The ability to wait for a larger
reward, and therefore to employ good temporal foresight, is a key
aspect of reward-related decision making and known to vary
between individuals (Critchfield and Kollins, 2001; Odum, 2011)
and to correlate with impulsiveness (Richards et al., 1999).
Impulsive individuals find it more difficult to wait for a delayed
reward and hence prefer smaller, immediate rewards over larger,
delayed rewards (Kalenscher et al., 2006; Peters and Buechel,
2011). Thus, the impact of a delay on the subjective reward value is
more pronounced in immature populations such as children and
adolescents (Christakou et al., 2011) and in impulsiveness dis-
orders such as ADHD (Scheres et al., 2008; Noreika et al., 2013),
although there have also been negative findings (Scheres et al.,
2006, 2010). Steeper temporal discounting, where delayed
rewards have less subjective value, is thought to reflect an
imbalance in the interplay between ventromedial prefrontal
cortex (vmPFC) and lateral frontal systems that mediate the
evaluation of future rewards and temporal foresight, respectively,
and ventral striatal and limbic systems that respond to immediate
rewards (Christakou et al., 2011; Peters and Buechel, 2011).

Abnormal activation in ventromedial frontal, limbic and ventral
striatal regions has been reported in ADHD patients relative to controls
during temporal discounting (Plichta et al., 2009; Rubia et al., 2009;
Lemiere et al., 2012) and reward processing (Kohls et al., 2013).
Reward-processing tasks in ASD individuals also elicit abnormal
activation in ventromedial and frontolimbic brain regions compared
with controls (Dichter et al., 2012; Kohls et al., 2013).

Ventromedial and frontolimbic brain regions are crucially
involved in temporal discounting (Christakou et al., 2011; Peters
and Buechel, 2011) and are abnormal in both ADHD (Plichta et al.,
2009; Rubia et al., 2009; Lemiere et al., 2012; Plichta and Scheres,
2014) and ASD individuals during tasks of reward-related decision
making (Dichter et al., 2012; Kohls et al., 2013). Despite this, no
fMRI study has tested temporal discounting in ASD or compared
this function between the two disorders. Only one neuropsycho-
logical study has compared temporal discounting performance
between ADHD and ASD, and that study found discounting
difficulties in the ADHD group, but not the ASD group, relative to
controls (Demurie et al., 2012).

It has been debated whether the phenotypically similar beha-
vioural and EF deficits in both disorders are secondary to ASD or a

phenocopy, which had prevented a co-diagnosis in the DSM-IV, or
whether they reflect true comorbidity, reflected in the allowance
for co-diagnosis in the DSM-V (http://www.dsm5.org). Functional
imaging could help this debate by elucidating whether executive
function deficits in both pure disorders are based on common
(“true comorbidity”) or dissociated (“not true comorbidity”)
underlying brain dysfunctions and whether the comorbid group
is an additive combination of the neurofunctional deficits of both
disorders (“true (additive) comorbidity”), more similar to ADHD or
ASD (“phenocopy” of either disorder), or a different neurobiologi-
cal disorder altogether.

To our knowledge, no fMRI study has directly compared the
comorbid and the two pure disorders. Only one task-based fMRI
study, from our group, has compared pure ADHD and pure ASD
patients during a sustained attention task, finding shared fronto-
striatal dysfunctions with more severe left frontal deficits in ADHD
and disorder-specific increased cerebellar activation in ASD
(Christakou et al., 2013). However, no comorbid group was
included in the study to elucidate whether the comorbidity
reflects an additive or distinctive pathophysiology.

The aim of this study was therefore to compare the brain
function of age- and IQ-matched boys with non-comorbid ADHD,
non-comorbid ASD, and comorbid ADHD and ASD, and healthy
controls, while they performed an fMRI temporal discounting task
(Rubia et al., 2009; Christakou et al., 2011). We selected the
temporal discounting task over other reward-processing tasks, as
temporal discounting is a key neuropsychological deficit in ADHD
(Rubia et al., 2009; Noreika et al., 2013) and mediated by lateral
orbitofrontal and ventromedial fronto-limbic structures that are
affected by both ADHD (Plichta et al., 2009; Rubia et al., 2009;
Lemiere et al., 2012; Plichta and Scheres, 2014) and ASD indivi-
duals during tasks of reward-related decision making (Dichter et
al., 2012; Kohls et al., 2013). Given that the key interests of the task
are the neural correlates of reward-associated decision making
and temporal discounting, which is reflected in the choice of the
larger, but delayed reward, we were particularly interested in the
group differences in brain correlates underlying the choice of the
delayed reward conditions.

We hypothesised that all patient groups relative to controls would
be impaired in temporal discounting and their underlying neuro-
functional correlates of ventromedial prefrontal and ventral striatal
systems, with the most severe impairments in the comorbid group.

2. Methods

2.1. Participants

Participants comprised 64 right-handed (Oldfield, 1971) boys (18 control boys,
18 boys with ADHD but no ASD, 15 boys with ASD and no ADHD and 13 boys with
comorbid ASD and ADHD), aged 11–17 years, IQZ70 (Table 1). ADHD boys met
criteria for DSM-IV diagnosis of inattentive/hyperactive-impulsive combined-type
ADHD and had to score above clinical thresholds of a raw score of 7 or above for
ADHD symptoms on the Strength and Difficulty Questionnaire (SDQ) (Goodman and
Scott, 1999), and a T-score of 65 or above on the Conners' Parent Rating Scale-Revised
(CPRS-R) (Conners et al., 1998). They also scored below clinical threshold for ASD on
the Social Communication Questionnaire (SCQ). ASD diagnosis was made using ICD-
10 research diagnostic criteria (World Health Organisation, 1994), and confirmed by
the Autism Diagnostic Interview-Revised (ADI-R) (Lord et al., 1994) and the Autism
Diagnostic Observation Schedule (ADOS) (Lord et al., 2000). ASD subjects scored
above the clinical cut-off for Autism Spectrum Disorders on the SCQ. All ASD
participants underwent a structured physical and medical examination to exclude
comorbid medical disorders and biochemical, haematological or chromosomal
abnormalities associated with ASD. ADHD symptoms were then controlled for in
this ASD group to create a pure ASD sub-group and a comorbid ADHD–ASD
subgroup. Individuals with pure ASD scored below clinical threshold on either the
CPRS-R or the hyperactive/inattentive subscale of the SDQ. Comorbid ASD and ADHD
participants scored 65 or above on the CPRS-R and seven or above on the
hyperactive/inattentive subscale of the SDQ but had no other comorbid conditions.
Patients were recruited through clinical services of the South London and Maudsley
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Trust (Table 1). All ASD boys were medication-naïve. Nine ADHD boys (50%) and one
comorbid boy (8%) were medicated with psychostimulants, but they were taken off
medication for 48 h before the scan. Patients had no comorbidities with other major
psychiatric disorders.

Eighteen healthy control boys who were IQ-, handedness-, and age-matched to
all other groups were recruited locally by advertisement and scored below clinical
thresholds on the SDQ, SCQ, and CPRS (Table 1).

Exclusion criteria for all were neurological disorders, and drug/alcohol depen-
dency. Intellectual ability was measured using the Wechsler Abbreviated Scale of
Intelligence-Revised (WASI-R) short form (Wechsler, 1999).

The study was conducted in accordance with the latest version of the
Declaration of Helsinki. Ethical approval was obtained from the local Research
Ethics Committee. Study details were explained in both written and oral form, and
written informed consent and assent was obtained for all participants.

2.2. Temporal discounting fMRI task

In the 12-min task, subjects choose by pressing a left (right index finger) or
right button (right middle finger) between a smaller amount of money (between d0
and d100) available immediately, or a larger amount (always d100) available after
1 week, 1 month or 1 year; delay choices are randomly displayed (20 trials for each
delay) to the right and left side of the screen for 4 s, followed by a blank screen of at
least 8 s (inter-trial-interval: 12 s). The immediate reward is adjusted in an
algorithm based on previous choices, which is calculated separately for each of
the three different delays, in order to narrow the range of values converging into an
indifference value that is considered by the subject as equivalent to the delayed
reward for that delay (Richards et al., 1999; Rubia et al., 2009; Christakou et al.,
2011). The algorithm ensures equal numbers of immediate and delayed reward
choices.

To estimate the steepness of temporal discounting for each participant, we first
calculated the indifference value between the immediate amount or the delayed
d100 for each delay interval (day, month, or year), calculated as the midpoint value
between the lowest immediate reward selected by the subject and the next lowest
immediate reward available (i.e., the value of immediate reward offered at which
the subject began consistently to select the standard d100 delayed reward)
(Richards et al., 1999). The indifference value is equivalent to the individual's
subjective value of d100 when it is available after each delay. Reward is typically
discounted in a hyperbolic function that depends on amount, delay and a free
impulsiveness indicator “k”, the main dependent task variable, which is calculated
by fitting a hyperbolic function to the indifference values for every delay, i.e., V¼A/
(1þkD), where V is the subjective value of a reward of amount A, D is the delay, and
k is a constant characterising the individual's discounting rate (Richards et al.,
1999). Larger k-values are associated with steeper reward devaluation with
increasing delay (Richards et al., 1999).

2.3. Analysis of performance data

An analysis of variance (ANOVA) was conducted with group as independent
measure and k as dependent measures to test for group differences in performance.

2.4. fMRI image acquisition

The fMRI images were acquired at the King's College London's Centre for
Neuroimaging Sciences, on a 3T General Electric Signa HDx TwinSpeed (Milwaukee,
WI, USA) MRI scanner using a quadrature birdcage headcoil. In each of 22 non-
contiguous planes parallel to the anterior–posterior commissure, 480 T2n-weighted MR
images depicting BOLD (blood oxygen level dependent) contrast covering the whole
brain were acquired with echo time (TE)¼30 ms, repetition time (TR)¼1.5 s, flip
angle¼601, in-plane voxel size¼3.75 mm, slice thickness¼5.0 mm, slice skip¼
0.5 mm). A whole-brain high resolution structural scan (inversion recovery gradient
echo planar image) used for standard space normalisation was also acquired in the
inter-commissural plane with TE¼40ms, TR¼3 s, flip angle¼901, number of slices: 43,
slice thickness¼3.0 mm, slice skip¼0.3 mm, in-plane voxel size¼1.875 mm, providing
complete brain coverage.

2.5. fMRI image analysis

Event-related activation data were acquired in randomized trial presentation,
and analysed using non-parametric analysis software developed at the Institute of
Psychiatry, King's College London (XBAM) (Brammer et al., 1997; Bullmore et al.,
1999). Data were first processed (Bullmore et al., 1999) to minimize motion-related
artifacts. A 3D volume consisting of the average intensity at each voxel over the
whole experiment was calculated and used as a template. The 3D image volume at
each time point was then realigned to this template by computing the combination
of rotations (around the x, y and z axes) and translations (in x, y and z) that
maximised the correlation between the image intensities of the volume in question
and the template. Following realignment, data were then smoothed using a
Gaussian filter (full width at half-maximum (FWHM) 2.354 n in-plane fMRI voxel
size mm) to improve the signal-to-noise characteristics of the images (Bullmore et
al., 1999). Then, time series analysis for each individual subject was conducted
based on a previously published wavelet-based resampling method for functional
MRI data (Bullmore et al., 1999, 2001). The individual maps were then registered
into Talairach standard space using a two-step process (Talairach and Tournoux,
1988).

Given that the key focus of the analysis was to understand the neural
underpinnings of temporal discounting underlying delayed choices, we conducted
linear brain-behaviour correlational analyses between the steepness of temporal
discounting in the variable k and brain activation during the delayed choices –

resting baseline. For this purpose, the Kendall non-parametric correlation coeffi-
cient was first computed at each voxel in standard space between the impulsive-
ness measure k and signal change in each group during the delayed choice
condition. The correlation coefficients were recalculated after randomly permuting
the subjects' k (but not the fMRI data). Repeating the second step many times (1000
times per voxel) gives the distribution of correlation coefficients under the null
hypothesis that there is no association between k and specific BOLD effects. This
null distribution can then be used to assess the probability of any particular
correlation coefficient under the null hypothesis. The critical value of the correla-
tion coefficient at any desired type I error level in the original (non-permuted) data
can be determined by reference to this distribution. Statistical analysis was
extended to the 3D cluster level as described before (Bullmore et al., 1999). The

Table 1
Sample characteristics for healthy control boys and patients with ADHD, ASD and comorbid ADHD and ASD.

Variables Controls (18) ADHD (18) ASD (15) Comorbid (13)
Mean (S.D.) Mean (S.D.) Mean (S.D.) Mean (S.D.)

Age (months) 183.3 (21.5) 171.7 (24.7) 177.1 (23.2) 168.8 (17.0)
IQ 120 (12.2) 110.0 (10.7) 112 (12.9) 110.8 (16.7)
Handedness 88.8 (14.1) 92.2 (8.8) 93.7 (9.2) 92.8 (9.5)
SDQ hyperactive-impulsive/inattentive subscale 2.1 (1.8) 8.2 (1.3) 4.5 (1.4) 8.5 (1.3)
SDQ – emotional distress Subscale 0.4 (0.6) 4.1 (3.3) 4.3 (2.7) 4.1 (2.8)
SDQ – conduct subscale 0.7 (1.1) 4.8 (2.3) 1.7 (1.8) 4.3 (2.6)
SDQ – peer relations subscale 1.1 (1.4) 3.8 (2.8) 5.4 (2.3) 7.4 (1.9)
SDQ – prosocial behaviour subscale 9.1 (1.2) 5.8 (2.6) 4.7 (2.7) 4.1 (2)
SDQ – total scores 4.2 (3.2) 20.8 (6.5) 15.9 (5) 24.5 (5.6)
SCQ total 2 (1.9) 11.0 (7.5) 25.7 (4.7) 25.5 (5.7)
CPRS-R total T-score 43 (17) 79 (9) 66 (10) 83 (6)
ADOS communication scores � � 3.9 (1) 3.8 (1)
ADOS social interaction scores � � 9.5 (2) 9.5 (2)
ADOS communication and social scores � � 13.3 (3) 13.3 (2)
ADOS stereotyped behaviour scores � � 1.7 (2) 1.4 (1)
ADI communication scores � � 17 (5) 16 (3)
ADI social interaction scores � � 22 (5) 18 (4)
ADI stereotyped behaviour scores � � 6 (2) 7 (2)

SDQ: Strength and Difficulties Questionnaire; SCQ: Social Communication Questionnaire; CPRS-R: Conners' Parent Rating Scale-Revised; ADOS: Autism Diagnostic
Observation Schedule; and ADI: Autism Diagnostic Interview.
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cluster probability under the null hypothesis was chosen to set the level of
expected type I error clusters to less than 1 error cluster per whole brain. In this
analysis less than one error cluster was observed at a p-value of po0.05 at the
voxel level and of po0.01 at the cluster level.

This led to the production of a specific brain-behaviour activation map (BBAM)
for each group.

3. Results

3.1. Subject characteristics

Univariate ANOVAs showed no group differences for age
(F¼1.3; d.f.¼3, 63; po0.3), IQ (F¼2.1; d.f.¼3, 63; po0.11), or
handedness (F¼0.7; d.f.¼3, 63; pon.s.).

As expected, multivariate ANOVAs showed significant group
effects for all clinical measures (Table 1). As expected, groups
significantly differed in measures of the SDQ (F¼7.7; d.f.¼3, 63;
po0.0001), with post hoc testing (corrected for multiple testing
using least significance difference (LSD)) showing that all patient
groups scored higher than controls (po0.05) with the exception
of conduct problems, which were not impaired in ASD participants
relative to controls. Both the ADHD and the comorbid groups
scored significantly higher on the SDQ conduct and hyperactive-
impulsive/inattentive scores than ASD patients (po0.05). All
groups differed significantly between each other in peer relation-
ships, which was significantly lower in the comorbid group
compared with the other three groups (po0.05), followed by
ASD compared with ADHD (po0.04). In the prosocial scale, the
comorbid group scored lower than the ADHD group (po0.03) and
the ASD group scored at a trend-level lower than the ADHD group
(po0.1). In the CPRS, significant group differences were observed
(F¼43; d.f.¼3, 63; po0.0001), due to all patients scoring higher
than controls (po0.0001) and the ADHD group scoring higher
than controls and the ASD group (po0.01) but not the comorbid
group (po0.3) and the comorbid group scoring higher than the
ASD group (po0.0001).

3.2. Performance

ANOVA showed a trend toward a significant group effect for the
temporal discounting variable k (F¼2; d.f.¼3, 63; po0.1) (mean k
(SD): controls: 0.02 (0.01); ADHD: 0.04 (0.03); ASD: 0.07 (0.08);
comorbid: 0.06 (0.1)). Post hoc t-tests (LSD corrected for multiple
comparison) showed that the ASD group had a significantly larger
mean k-value compared with controls (po0.02) and the comorbid
group had a trend-level higher k-value compared with controls
(p¼0.07) (effect size¼0.5), indicating that the ASD and comorbid
groups discounted rewards more steeply than controls as a
function of delay (Fig. 1). The analysis was repeated using the
area under the curve (AUC). The trend finding remained similar for
AUC (F¼2; d.f.¼3, 63; po0.1). Post hoc analyses (LSD corrected
for multiple comparisons) showed that the ASD group had a
significantly smaller AUC than the controls (po0.03), while none
of the other groups differed from controls.

3.3. Movement

Multivariate ANOVA (MANOVA) or multiple ANOVAs showed
no significant group differences in mean, median or maximum
rotation and translation movement parameters in the three-
dimensional Euclidean space (F¼0.8; d.f.¼3, 63; p¼n.s.).

3.4. Correlation between delay discounting and brain activation
during delayed choices within each group

In controls, decreased temporal discounting (as expressed by k)
was associated with activation during delayed choices in left vmPFC/
ACC/ventral striatum, right superior frontal cortex, supplementary
motor area (SMA), left anterior cingulate cortex (ACC)/caudate,
bilateral pre- and postcentral gyri, bilateral superior temporal lobe/
insula reaching into left inferior frontal lobe, left midbrain and right
superior cerebellar hemisphere (Table 2(A), Fig. 2A).

In the ADHD group, decreased k was associated with activation
during delayed choices in right inferior frontal (IFC)/premotor cortex,
bilateral occipital and inferior cerebellar areas (Table 2(B), Fig. 2B).

In the ASD group, decreased k was associated with activation
during delayed choices in left inferior parietal lobe reaching into
pre- and post-central gyri and in right superior cerebellum
(Table 2(C), Fig. 2C).

In the comorbid group, decreased k was associated with
activation during delayed choices in right middle temporal and
occipital lobes (Table 2(D), Fig. 2D).

3.5. Group differences in brain-behaviour correlations

Given that the main focus of this study was to understand the
differential activation between groups in neural response asso-
ciated with better (less steep) temporal discounting, we selected
brain areas that were correlated with lower k in any of the four
groups. For this purpose, a conjunction analysis was conducted of
all brain regions that were correlated with k across any of the four
groups during delayed choices. This resulted in 14 brain regions:
left vmPFC/ACC/ventral striatum, right superior frontal cortex,
right IFC, SMA, left ACC/caudate, bilateral pre- and post-central
gyri, bilateral superior temporal lobe, left midbrain, left inferior
parietal lobe, right superior and left inferior cerebellum and
bilateral occipital lobe (Fig. 3, Table 3). All resulting areas were
used as regions of interest (ROIs) and the BOLD responses were
extracted in each of these regions for each study participant.
T-tests were then conducted to test for differences in brain-
behaviour correlations in each cluster between the different
groups using Bonferroni correction for multiple comparisons
(14 regions by six tests¼0.05/84; po0.00059) (Fig. 3, Table 3).

Fig. 1. Graph showing the subjective indifference value for the delayed value of
d100 for each delay for each group. ADHD¼Attention Deficit Hyperactivity
Disorder; ASD¼Autism Spectrum Disorder; comorbid: group with both ADHD
and ASD. The subjective value of d100 decreases as a function of delay, more
steeply in ASD and at a trend-level in the comorbid group relative to controls.
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3.6. Shared abnormalities in brain-discounting associations relative
to controls

In SMA, pre- and post-central gyri and midbrain, controls had
significantly stronger brain-discounting relationships than all the
patient groups, who did not differ from each other (Table 3A).

3.7. Disorder-specific abnormalities in brain-discounting
associations

The comorbid group had significantly weaker brain-behaviour
associations than all other groups in the vmPFC extending into the

ACC and ventral striatum. In a dorsal ACC/caudate cluster, they
differed from all groups except the ASD group.

In right superior frontal cortex and left superior temporal lobe/IFC,
the comorbid group showed significantly weaker brain-behaviour
associations than the other two groups, who, however, shared weaker
associations in these regions relative to controls.

The ADHD and comorbid groups showed weaker brain-
behaviour associations in the right lateral superior cerebellum
relative to controls, while ASD participants and controls did not
differ from each other.

The ASD boys showed weaker brain-behaviour associations
than all other groups in right superior temporal lobe/insula, which

Table 2
Brain activation clusters that correlated negatively with temporal discounting in each of the 4 groups.

Brain regions of activation Brodmann area (BA) Talairach coordinates (x;y;z) Voxels Cluster p-value

A. CONTROLS
L ventromedial OFC/ACC/ventral striatum 11/32/25 �4;26;�18 12 0.00005
R superior frontal cortex 10 25;52;�18 27 0.00005
Supplementary Motor Area (SMA) 6 4;4;53 37 0.00005
R pre/postcentral 4/3/2/1 51;�11;53 59 0.00005
L pre/postcentral 4/3/2/1 �29;�7;48 59 0.00005
Superior temporal/insula 42 47;�19;9 49 0.001
ACC/caudate 24/32/6 �7;19;26 75 0.004
L superior temporal/insula 42 �40;�7;9 13 0.005
L superior temporal/inferior frontal 21/45 �58;7;�18 68 0.00005
L midbrain �11;�22;�35 19 0.00005
R superior cerebellum (hemisphere) 22;�37;�29 14 0.00005

B. ADHD
R inferior frontal/premotor cortex 44/6 61;7;15 51 0.00005
L lingual gyrus 18/19 �11;�70;�7 39 0.00005
L inferior cerebellum (hemisphere) �58;�67;�29 15 0.00005
R inferior cerebellum/occipital 19/18 43;�56;�35 227 0.00005

C. ASD
L inferior parietal/postcentral/precentral 40/2/1/3/4/6 �43;�15;42 155 0.00005
R superior cerebellum (hemisphere) 20/37 33;�30;�29 20 0.00005

D. Comorbid ADHD and ASD
R middle temporal lobe 20 29;�7;�40 10 0.00005
R occipital 19 33;�74;9 18 0.00005

Note: ACC¼anterior cingulate cortex and OFC¼orbitofrontal cortex.
Brain-behaviour correlation analyses were conducted at voxel-wise po0.05 and cluster-wise po0.01.

Fig. 2. Horizontal slices showing brain regions that correlated with temporal discounting during delayed choices for each group. (A) Healthy controls, (B) ADHD, (C) ASD and
(D) Comorbid ADHD and ASD. Talairach z-coordinates are indicated for slice distance (in mm) from the intercommissural line. The right side of the image corresponds to the
right side of the brain.
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was, however, also weaker in ADHD and comorbid patients
relative to controls (Table 3B).

3.8. Stronger brain-discounting associations

The ADHD group had significantly stronger brain-behaviour
correlations in right IFC and lingual gyrus relative to all other
groups and in left inferior cerebellum relative to controls but not
the other patient groups. The ASD group had a significantly
stronger brain-behaviour correlation in left inferior parietal lobe
than all other groups. The comorbid group had the strongest
brain-behaviour correlation in the occipital lobe relative to all
other groups, which also applied to both pure patient groups
relative to controls (Table 3C).

4. Discussion

We investigated differences in temporal discounting and the
underlying brain-behaviour correlations between healthy controls
and patients with ADHD, ASD and comorbid conditions. We found
that only the ASD group showed significantly steeper (worse)
discounting relative to controls, followed by a trend toward
significantly steeper discounting in the comorbid group. The fMRI
analysis showed shared as well as disorder-specific abnormalities
in the three patient groups in their brain-behaviour associations.
As expected, the comorbid group had the most pronounced
abnormalities in their brain-behaviour associations in key regions
of temporal discounting, including the vmPFC, ACC, and caudate as
well as the superior frontal and temporal cortices relative to the
other two groups. The ASD group had the weakest brain-behaviour
association in the right IFC, superior temporal lobe, and insula
relative to all other groups. The ADHD patients shared weak brain-
behaviour associations in the right cerebellum with the comorbid
group and in the right superior frontal and left inferior frontal and
superior temporal cortices with ASD. The findings of both qualita-
tively (disorder-specific) and quantitatively (shared but more

severe) more deviant brain-behaviour association in the comorbid
group relative to healthy controls and the other two pure patient
groups suggests that comorbid ADHD and ASD is characterised by
a different underlying neurofunctional pathology than the two
pure disorders and is not simply a phenocopy or an additive
combined pathology of the two pure disorders.

4.1. Performance differences

The finding of no impairments in temporal discounting in
ADHD patients is not in line with previous evidence for temporal
discounting deficits in ADHD (Scheres et al., 2008; Noreika et al.,
2013), but with negative findings from other studies (Scheres et al.,
2006, 2010), in particular in task versions with variable rather than
fixed delays (Scheres et al., 2006) and with hypothetical versus
real rewards (Scheres et al., 2010). As our study used hypothetical
rewards, this may have accounted for the negative findings. Also,
our sample was older than the younger paediatric samples tested
in neuropsychological studies, and not all prior studies have
carefully excluded ASD symptoms in ADHD. The findings of
performance deficits only in the ASD and (at a trend level) in the
comorbid groups parallel disorder-specific deficit findings in the
related function of planning in ASD relative to ADHD (Geurts et al.,
2004). The trend-level significance for steeper discounting in the
comorbid group was likely underpowered as shown in an effect
size of 0.5 and may have reached significance with larger numbers.
This may also apply to the findings in ADHD boys who had non-
significantly, but nominally higher k-values than controls. While
subject numbers of 15–20 are sufficiently powered for fMRI
analyses (Thirion et al., 2007), they are underpowered for perfor-
mance effects, and negative findings need to be interpreted with
caution.

4.2. fMRI results

In fMRI analyses, the comorbid group exhibited the weakest
brain-behaviour correlations relative to all other groups in key

Fig. 3. Conjunction analysis. Axial slices show brain areas that correlated with temporal discounting during delayed choices in any of the 4 groups. Talairach z-coordinates
are indicated for slice distance (in mm) from the intercommissural line. The right side of the image corresponds to the right side of the brain.

Table 3
Significant group differences in the correlations between brain activation and the temporal discounting variable k in the 14 regions of interest.

Correlation between brain activation and k Brain regions of activation Brodmann area (BA) Talairach coordinates (x;y;z) Voxels Cluster p-value

A. Shared differences in brain-discounting associations relative to controls
C4ADHD, ASD, CM R SMA 6 7;�15;53 37 0.00001
C4ADHD, ASD, CM R pre/postcentral 4/3/2/1 51;�15;42 59 0.00001
C4ADHD, ASD, CM R midbrain 4;�33;�35 19 0.00001

B. Disorder-specific differences in brain-discounting associations
C, ADHD, ASD4CM Ventromedial OFC/ACC/ventral striatum 11/32/25 �4;30;�24 12 0.00001
C4ADHD, ASD4CM R superior frontal cortex 10 29;48;�18 27 0.00001
C, ADHD4CM R and L ACC/caudate 24/32/6 �7;15;9 71 0.00001
C4ADHD; ASD4CM L superior temporal/inferior frontal 21/45 �65;�11;�18 68 0.00001
C4ADHD, CM R superior cerebellum (hemisphere) 36;�52;�35 14 0.00001
ADHD4C, CM4ASD R inferior frontal/premotor cortex 44/6 65;4;4 51 0.00001
C4ADHD, CM4ASD R superior temporal/insula/putamen 42 33;�15;4 49 0.00001

C. Alternative brain-discounting associations in patients
CM4ADHD, ASD4C R occipital 19 36;�78;�2 18 0.00001
ASD4C, ADHD, CM L inferior parietal/postcentral/precentral 40/2/1/3/4/6 �36;�48;26 194 0.00001
ADHD4C, ASD, CM L lingual 18/19 �7;�74;�13 39 0.00001
ADHD4C L inferior cerebellum �58;�67;�35 15 0.00001

Note: SMA, supplementary motor area; OFC, orbitofrontal cortex; and ACC, anterior cingulate cortex.
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regions of temporal discounting, in vmPFC, ACC, ventral striatum,
right superior frontal cortex and left IFC/superior temporal lobe
(Christakou et al., 2011; Peters and Buechel, 2011). This suggests
that the comorbid group is the group with the most pronounced
brain function abnormalities. The vmPFC mediates the assessment
of the subjective reward value (Peters and Buechel, 2011), while the
ACC and SMA are vital for decision making and cognitive control,
exerted during delayed gratification (Bush et al., 2002; Cardinal,
2006; Peters and Buechel, 2011). The lateral prefrontal cortex,
caudate and insula have a crucial role in timing, in particular
temporal foresight and future reward prediction (Cardinal, 2006;
Wittmann et al., 2007; Christakou et al., 2011; Peters and Buechel,
2011). Furthermore, in particular, the vmPFC and lateral/inferior PFC
are progressively more recruited in association with progressively
reduced steepness of discounting during development from child-
hood to adulthood. This suggests that the comorbid group had the
most immature brain-behaviour correlation (Christakou et al.,
2011), possibly reflecting a delay in functional development.

The findings of both disorder-specific brain-behaviour abnorm-
alities (vmPFC/ACC/ventral striatum) as well as shared but quanti-
tatively more severe abnormalities (inferior and superior frontal
and temporal lobes) in the comorbid group relative to the other
groups in key discounting areas suggest that this group has a
different underlying pathophysiology compared with that of either
of the two non-comorbid patient groups, suggesting it is neither a
phenocopy of either disorder nor an additive pathology but a
different neurofunctional pathology altogether.

Although the pure ASD group showed the steepest temporal
discounting, they showed relatively little disorder-specific brain-
behaviour deviance compared with the other groups. ASD patients
exhibited the weakest brain-behaviour association in the right
superior temporal lobe/insula and IFC compared with all other
groups, but shared deficits in left IFC and superior temporal lobe
with ADHD. The insula plays an integral part in temporal coding
and selection of rewards (Cardinal, 2006; Wittmann et al., 2007;
Christakou et al., 2011), while the IFC mediates temporal foresight
(Wittmann et al., 2007; Christakou et al., 2011). The significantly
weaker brain-discounting correlation in ASD compared with the
other groups in these two brain regions that mediate temporal
foresight could suggest that problems with forward planning
underlie poor temporal discounting in ASD, which would be in
line with consistent evidence for planning deficits in ASD relative
to controls (Hill, 2004) and ADHD patients (Geurts et al., 2004).

The ADHD group had no disorder-specific but only shared
abnormalities in the SMA and the pre- and post-central gyri with
all other patient groups, in right superior cerebellum with the
comorbid group and in left IFC/superior temporal lobe with the
ASD group. Furthermore, ADHD patients showed stronger brain-
behaviour correlations compared with all other groups in the right
IFC and left posterior cerebellum, both important regions for
temporal foresight (Wittmann et al., 2007; Christakou et al.,
2011), which may have been a compensation for reduced correla-
tion with frontal decision-making areas in the SMA (Bush et al.,
2002; Cardinal, 2006; Peters and Buechel, 2011) and with the left
IFC and right superior cerebellum, important timing regions
(Wittmann et al., 2007; Christakou et al., 2011). This compensation
may have protected the ADHD group from poor task performance.
Abnormalities in the SMA have consistently been observed in
ADHD patients during tasks of cognitive control (Hart et al., 2013)
and in the left IFC and right superior cerebellum during timing
tasks (Hart et al., 2012). A compensatory over-activation of the left
posterior cerebellum in combination with frontal deficits has
previously been observed in ADHD during attention functions
(Rubia et al., 2009; Cubillo et al., 2012; Hart et al., 2013). The
spared performance and relatively minor brain-behaviour differ-
ences between ADHD and controls suggest that, while ADHD

patients share deficits with the other groups in some areas that
are important for timing and decision making (left IFC and SMA),
they are more similar to controls in their underlying neurofunc-
tional substrates of temporal discounting than the comorbid
ADHD/ASD and the ASD groups.

A limitation is the relatively small subject numbers, in parti-
cular of the comorbid group. Also, only males were investigated to
increase homogeneity, but limiting generalisability of findings. A
strength of the study is the robust diagnostic characterisation of
IQ-matched, non-comorbid patient groups and the medication-
naïvety of all ASD patients and the majority of ADHD patients,
given long-term effects of psychotropic medication on brain
structure and function (Nakao et al., 2011). However, a limitation
is that the diagnosis of ADHD was not confirmed by a semi-
structured assessment and the comorbidity between ADHD and
ASD was not confirmed by clinical interview.

In conclusion, to our knowledge, this is the first comparative
fMRI study between patients with ADHD, ASD and comorbid
ADHD and ASD. We demonstrate that during temporal discount-
ing, ADHD, ASD and the comorbid conditions are associated with
both shared and disorder-specific abnormalities in their brain-
behaviour associations, with the comorbid group showing the
most pronounced differences in their brain-behaviour associations
relative to controls and relative to the “pure” disorders, suggesting
they are neither a phenocopy of the two pure disorders nor an
additive pathology but a different neuro-functional pathology
altogether.
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