The Self in a Social World

Insights into Autism

Dr Michael Lombardo
Autism Research Centre
University of Cambridge

Autism Neuroscience Conference
10 Sept 2010
The Paramount Role of the Self in the Social World

Why the Self is Important in Autism

Monday, September 13, 2010
The ‘Real’ Problem of Others Minds

The Philosophical Problem

I know I have a mind.
But how do I know you have a mind?
Maybe you’re just a really convincing robot?

This is a problem mainly for philosophers, as the average person starts developing a concept that others have minds relatively early in life.

We even spontaneously attribute mental states to things that don’t have mental states. Think of the Heider-Simmel animations.

However, the reason this problem exists is because of the disparity between access to our own and other’s minds.

http://sites.google.com/site/mvlombardo
The information available for understanding self is much larger than for other. Qualitatively, there is also information for self that we do not possess when perceiving others. We do not possess direct access to other’s mental states and embodied information. We judge others primarily based on indirect methods of observing external information (e.g., behavior, action, context), second-hand reports (e.g., gossip), or sheer intuition.
How We Solve the Problem of Other Minds

1. Behaviorism - assume other’s have minds, but judge them purely on behaviors
2. Theorizing - like a scientist, have a theory, gather data, evaluate hypothesis, replicate, revise theory, etc, etc, etc.

3. Simulation or Projection

***Caveat: These strategies aren’t mutually exclusive and not an exhaustive list of everything in the mindreader’s toolkit

http://sites.google.com/site/mvlombardo

Monday, September 13, 2010
Why Simulate or Project Self in the Social World?

• Asymmetry in the *kind* of information available for self and other
 • We have direct access to our own embodied experiences and mental states. We do not have such privileged access to this ‘internal’ information about others. Instead, we only have access to the observable behaviors of others. This asymmetry in the *kind* of information available for understanding self and other, paves a ‘path-of-least-resistance’ for using the self as a proxy for understanding others.

• Homo-egocentric
 • We are extremely egocentric. This is because the ‘self’ exerts a totalitarian effect on information processing. The self organizes and shapes our experiences and perceptions, is central to our view of the social world, and exerts control over our attributions and construals of the world. **This makes the self the default starting point for making sense of the social world.**

 What is this good for? Under ‘Simulation & Projection’, both considerations here can be leveraged to help facilitate understand the minds of others.
The Ancient Greeks were the first to point out the integral relationship between understanding ourselves and understanding others. The Greeks thought that by understanding oneself, one could become capable of understanding others as well.
Simulation at the Neural Level

Shared neural representation for Self AND Other

A. Action-Perception Mirroring
- Gazzola et al., 2007, Neuroimage
- Fagasti et al., 2005, Science

B. Shared Somatosensation
- Blakemore et al., 2005, Brain
- Keysers et al., 2004, Neuron

C. Shared Digest
- Wicker et al., 2003, Neuron

D. Shared Pain
- Singer et al., 2004, Science

D. Direct & Reflected Self-Knowledge
- Ochsner et al., 2005, Neuroimage

D. Mentalizing with Similar Others
- Mitchell et al., 2008, Neuron

D. Theory of Mind
- Saxe & Kanwisher, 2003, Neuroimage

http://sites.google.com/site/mvlombardo

Monday, September 13, 2010
A Tale of Two Systems

Mirror System

Low-level

Mentalizing System

High-level

http://sites.google.com/site/mvlombardo

Monday, September 13, 2010
Functional Connectivity

Singer et al., 2004, Science

Zaki, Ochsner, et al., 2007, Soc Neurosci

http://sites.google.com/site/mvlombardo
<table>
<thead>
<tr>
<th>fMRI (3T)</th>
<th>Mentalizing</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td>How likely are You to...</td>
<td>How likely are You to...</td>
</tr>
<tr>
<td></td>
<td>think keeping a journal is important</td>
<td>have bony elbows</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>not at all</td>
<td>very likely</td>
</tr>
<tr>
<td>Other</td>
<td>How likely is the Queen to...</td>
<td>How likely is the Queen to...</td>
</tr>
<tr>
<td></td>
<td>think keeping a journal is important</td>
<td>have bony elbows</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>not at all</td>
<td>very likely</td>
</tr>
</tbody>
</table>

n=33 Block Design TR=2000ms 33 axial slices Data Analysis: SPM5 8mm FWHM smoothing

Lombardo et al., 2010, *J Cogn Neurosci*

http://sites.google.com/site/mvlombardo
Shared Mentalizing

Lombardo et al., 2010, J Cogn Neurosci

http://sites.google.com/site/mvlombardo
Independent Mentalizing Systems?

[SM>SP]>[OM>OP]

Lombardo et al., 2010, *J Cogn Neurosci*

http://sites.google.com/site/mvlombardo
Shared Mentalizing Circuits

Lombardo et al., 2010, J Cogn Neurosci

http://sites.google.com/site/mvlombardo
Zaki et al., 2010, PNAS
Schippers et al., 2010, *PNAS*

Gesturer’s Mirror System

http://sites.google.com/site/mvlombardo

Guesser’s Mentalizing & Mirror System
Why is the Self Important in the Social World?

1. Asymmetry in Informational Sources and Egocentrism:
- Self is a supraordinate object of knowledge compared to the social world.
- We have direct access to embodied and introspective information for self that we do not possess for others.
- By default we are egocentric in how we construe the world around us... Especially the social world.
- What is this good for? It allows self to be leveraged for the task of understanding other’s internal worlds, especially in situations where there is a considerable lack of information and uncertainty.

2. Simulation or Projection:
- Uses asymmetry to informational sources and egocentrism to an advantage.
- Likely occurs through an automatic process of anchoring on self and then effortful and controlled adjustment away from self when the context or situation suggests that self may not be the best proxy

3. Shared Neural Representations for Self and Other:
- assessing the underlying processes involved in social cognition can be facilitated by using functional neuroimaging to isolate similar or different neural mechanisms involved in thinking about the social world.
- the brain tends to share how it represents self with others.
- shared representation can be similar regions of the brain activated for both self and other, or similar neural circuits functionally wired up for processing information about self and other

http://sites.google.com/site/mvlombardo
The Autistic Self

αὐτός

Autism

“Self”

http://sites.google.com/site/mvlombardo
Extreme Egocentrism

- Kanner (1943) - ‘extreme autistic aloneness’
- Asperger (1944) - ‘egocentric in the extreme’
- Pronominal reversals - ‘you’ vs ‘I’
- Clinical accounts - ‘locked into their own world’
- First person accounts:
 “My own conversations and thoughts were always my best friends. I was happy spending time with only me, happy to talk to myself and happy to entertain myself.” (Willey, 1999)
- Inability to put self in other’s shoes
 e.g. Deficits in theory of mind/mentalizing

Egocentrism, allocentrism, and Asperger syndrome

Uta Frith *, Frederique de Vignemont

Lombardo & Baron-Cohen, 2010, WIREs Cogn Sci

http://sites.google.com/site/mvlombardo
Self-Referential Deficits: ‘Absent Self’

• No self-conscious reaction to mirror self-recognition
 Neuman & Hill, 1978; Dawson & McKissick, 1984;

• Early deficits in responding to one’s own name
 Osterling & Dawson, 1994; Zwaigenbaum et al., 2005; Nadig et al., 2007;

• Deficits in understanding one’s own false belief
 Baron-Cohen, 1989; Perner et al., 1989; Williams & Happe, 2009

• Monitoring Intentions
 Phillips et al., 1993; Williams & Happe, 2010

• Impaired Emotional Awareness (‘Alexithymia’)
 Lombardo et al., 2007; Hill, Berthoz & Frith, 2004; Silani et al., 2008; Minio-Paluello et al., 2009

• Less Self-Conscious Emotion Experience
 Kasari et al., 1993; Hobson et al., 2006;

• Impaired Autobiographical/Episodic Memory
 Klein et al., 1999; Bowler et al., 2000; Crane & Goddard, 2008

• Atypical Self-Reference Effect in Memory
 Lombardo et al., 2007; Toichi et al., 2002; Henderson et al., 2009

Lombardo & Baron-Cohen, 2010, WIREs Cogn Sci

http://sites.google.com/site/mvlombardo
Self-Reference Effect in Memory

Lombardo et al., 2007, PLoS One

http://sites.google.com/site/mvlombardo
Related Impairments in Self and Other

Table 3. Empathy and self-consciousness/awareness data.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ASC</th>
<th>t value</th>
<th>p value</th>
<th>Cohen's d</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRI EC</td>
<td>18.93 (5.16)</td>
<td>15.83 (6.09)</td>
<td>2.127</td>
<td>p=0.038</td>
<td>0.56</td>
</tr>
<tr>
<td>IRI PT</td>
<td>18.50 (5.30)</td>
<td>14.33 (5.49)</td>
<td>2.991</td>
<td>p=0.004</td>
<td>0.79</td>
</tr>
<tr>
<td>IRI FS</td>
<td>17.77 (5.69)</td>
<td>13.87 (6.34)</td>
<td>2.507</td>
<td>p=0.015</td>
<td>0.66</td>
</tr>
<tr>
<td>IRI PD</td>
<td>10.60 (4.00)</td>
<td>14.53 (5.42)</td>
<td>-3.195</td>
<td>p=0.002</td>
<td>0.84</td>
</tr>
<tr>
<td>ECS</td>
<td>41.97 (7.99)</td>
<td>37.47 (8.16)</td>
<td>2.158</td>
<td>p=0.035</td>
<td>0.57</td>
</tr>
<tr>
<td>Cognitive EQ</td>
<td>15.27 (5.25)</td>
<td>4.17 (3.81)</td>
<td>9.381</td>
<td>p<0.001</td>
<td>2.46</td>
</tr>
<tr>
<td>Affective EQ</td>
<td>14.47 (6.30)</td>
<td>5.87 (3.83)</td>
<td>6.388</td>
<td>p<0.001</td>
<td>1.68</td>
</tr>
<tr>
<td>Eyes Test</td>
<td>27.03 (3.90)</td>
<td>23.73 (6.67)</td>
<td>2.340</td>
<td>p=0.023</td>
<td>0.61</td>
</tr>
<tr>
<td>PSCS</td>
<td>30.50 (4.16)</td>
<td>29.80 (5.42)</td>
<td>0.561</td>
<td>p=0.577</td>
<td>0.15</td>
</tr>
<tr>
<td>TAS</td>
<td>41.97 (9.19)</td>
<td>58.37 (14.19)</td>
<td>-5.315</td>
<td>p<0.001</td>
<td>1.40</td>
</tr>
<tr>
<td>DIF</td>
<td>13.50 (4.82)</td>
<td>20.03 (6.70)</td>
<td>-4.337</td>
<td>p<0.001</td>
<td>1.14</td>
</tr>
<tr>
<td>DDF</td>
<td>11.10 (4.85)</td>
<td>16.87 (5.62)</td>
<td>-4.252</td>
<td>p<0.001</td>
<td>1.12</td>
</tr>
<tr>
<td>EOT</td>
<td>17.37 (4.16)</td>
<td>21.47 (4.90)</td>
<td>-3.493</td>
<td>p<0.001</td>
<td>0.92</td>
</tr>
<tr>
<td>SFA</td>
<td>0.11 (0.03)</td>
<td>0.09 (0.03)</td>
<td>2.136</td>
<td>p=0.037</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Lombardo et al., 2007, *PLoS One*

http://sites.google.com/site/mvlombardo
Atypical Neural Self-Representation in Autism

Meta-Analysis: Self>Other

MCC

vMPFC

Lombardo et al., 2010, *Brain*

Parametric Effect Self-Relevance

Moran et al., 2006, *J Cogn Neurosci*

http://sites.google.com/site/mvlombardo

Monday, September 13, 2010
Chiu et al., 2008, Neuron

http://sites.google.com/site/mvlombardo
Atypical Neural Self-Representation in Autism

Lombardo et al., 2010, *Brain*

http://sites.google.com/site/mvlombardo
Why is the Self Important in Autism?

1. Related Impairments in the Self-Referential and Social Domain:
 - Deficits in the social domain are related to deficits in the self-referential domain. What are the mechanisms tying these deficits together?

2. Atypical Neural Self-Representation:
 - The autistic brain atypically represents self-relevant information. This may be an explanation behind the paradoxical observations of both extreme egocentrism and impaired self-referential cognition.

3. Derailed Development of Self:
 - Understanding the developmental trajectory behind self-referential processing and social processing is an important area for future research. Which is impaired first, if any? Do early deficits in one lead to deficits in the other? How can an understanding of early atypical self-referential ability help in early identification of autism?

4. Simulation Deficits:
 - Is simulation a route for social inference that individuals with ASC have difficulty with? If so, which aspect of simulation is off track; anchoring on self, adjustment away from self or both?

5. Revisiting Egocentrism in Autism:
 - If egocentrism is the norm in the general population, how do we know that egocentrism in autism is an extreme of this?

6. A Route for Identifying New Mechanisms Involved in Social-Communicative Difficulties in Autism:
 - Research on social-communicative difficulties in autism has largely been dominated by an other-centric focus (e.g., reading social cues from others) or a target-agnostic focus (e.g., generalized mindreading mechanisms)? This type of focus ignores all the ways in which self is paramount in the social world.

http://sites.google.com/site/mvlombardo
Thanks!

Colleagues
Simon Baron-Cohen
Bhismadev Chakrabarti
Ed Bullmore
Susan Sadek
Sally Wheelwright
Greg Pasco
John Suckling
Meng-Chuan Lai
Jennifer Barnes
Erin Ingudomnukul
Liliana Ruta
MRC AIMS Consortium

Funding/Support
- Medical Research Council (MRC)
- The Shirley Foundation
- Cambridge Overseas Trust
- Cambridge MRIS Unit

http://sites.google.com/site/mvlombardo

Monday, September 13, 2010