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Abstract	

The	first	part	of	this	thesis	discusses	developmental	influences	on	the	human	connectome	

in	 relation	 to	 autism	 and	 attention	 deficit	 hyperactivity	 disorder	 (ADHD),	 conditions	

associated	with	alterations	 in	brain	connectivity	and	marked	by	social	 impairments.	 It	

reports	an	experiment	investigating	whether	the	connectomes	of	individuals	with	autism	

or	ADHD	differ	from	the	connectome	of	neurotypical	individuals,	and	what	the	underlying	

genetic	basis	could	be	 for	any	differences	 in	neural	architecture.	Chapter	2	reports	an	

analysis	 of	 networks	 in	 children	 with	 autism	 or	 ADHD,	 using	 structural	 covariance	

magnetic	resonance	imaging	(scMRI).	We	found	overlapping	as	well	as	distinct	network	

features	across	both	conditions.	Chapter	3	reports	an	analysis	of	how	gene	expression	

might	be	associated	with	the	basic	building	blocs	of	these	structural	covariance	networks.	

We	 found	 that	 synaptic	 and	 transcriptionally	 downregulated	 genes	 were	 replicably	

associated	with	cortical	thickness	differences	in	children	with	autism,	but	not	in	children	

with	ADHD.		

	

In	addition,	the	first	part	also	aims	to	elucidate	the	potential	modulation	effects	of	sex	on	

autism	neurobiology.	Chapter	4	reports	an	analysis	of	structural	covariance	networks	in	

male	 and	 female	 adults	 with	 and	 without	 autism.	 We	 found	 that	 biological	 sex	 is	 a	

modulator	 of	 neurobiological	 heterogeneity	 in	 autism.	 Chapter	 5	 reports	 pilot	 data	

aiming	 to	 identify	an	electrophysiological	signature	of	 these	network	properties	using	

electroencephalography	 (EEG).	 We	 find	 little	 evidence	 for	 theories	 about	 network	

asymmetry,	but	indications	of	altered	frontal	network	integration.	



The	 second	 part	 of	 the	 thesis	 examines	 the	 acute	 effects	 of	 hormones	 on	 brain	

connectomics.	Hormones	are	an	integral	part	of	the	mechanism	of	social	behaviour.	In	a	

series	of	hormone	administration	studies,	we	report	experiments	to	test	the	acute	effects	

of	 steroid	and	peptide	hormones	on	brain	 functional	 connectivity	 (Chapters	6	and	7).	

Chapter	 6	 reports	 an	 oxytocin	 administration	 study	 that	 used	 a	 novel	 data-driven	

approach	to	assess	resting-state	 fMRI	connectivity	 in	women.	Although	the	number	of	

fMRI	studies	on	oxytocin	have	increased	over	past	years,	little	is	known	about	its	effect	

on	women.	We	found	that	oxytocin	robustly	enhances	cortico-subcortical	connectivity,	

and	that	this	effect	positively	correlates	with	autistic	traits.	This	is	interesting	given	that	

oxytocin	has	been	proposed	as	a	potential	therapeutic	 in	autism.	Chapter	7	reports	an	

experiment	 testing	 if	 testosterone	 modulates	 connectivity	 in	 a	 specific	 social	

environment	(a	fear	response).	This	was	confirmed	during	the	social	task,	but	not	during	

baseline	resting-state,	highlighting	the	role	of	testosterone	in	functional	connectivity	in	

this	specific	context.	

	

Chapter	8	is	the	concluding	chapter	that	integrates	all	the	empirical	findings	in	the	thesis.	

We	discuss	their	implications	for	our	understanding	of	autism	and	ADHD,	and	of	the	role	

of	steroid	and	peptide	hormones	in	the	typically	and	atypically	developing	connectome.	

Chapter	8	also	reflects	on	the	limitations	of	the	experiments	reported,	and	sets	out	future	

directions	for	research	in	this	area.	 	
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Chapter	1 Introduction	

The idea of the brain as a network of constituent neuronal elements is not new. Already in the 

early 1900’s Santiago Ramón y Cajal, considered one of the founding fathers of modern 

neuroscience, noticed the structured patterns of the human cortex (DeFelipe & Jones, 1988). 

Methods to study these fascinating patterns have evolved fast since the time of Golgi staining. 

Techniques such as fluorescence microscopy, electron microscopy but also magnetic resonance 

imaging (MRI), diffusion tensor imaging (DTI), and elecetroencephalography (EEG) are but a 

few examples of techniques that have made it possible to study neuronal and cortical structures 

at micro and macro scales. These advances combined with improvements in computational 

power are increasingly giving rise to a new field of neuroscientific study: network science and 

the study of the human connectome (Sporns, Tononi, & Kötter, 2005). In its broadest sense the 

human connectome is taken to mean: the network of connections between different parts of the 

brain.  

 

Distinctions are often made between structural connectivity (e.g. physical connections) and 

functional connectivity (some statistical relation between activity in different brain regions). 

These networks are no longer being studied on a purely structural level or in vitro. There is an 

increased interest in the relation between the functioning of this network and the functioning 

on a more cognitive and behavioural level (Seung, 2011), as well as efforts to disentangle the 

mechanistic underpinning of the emergent network properties (Romme et al., 2016; Whitaker 

et al., 2016). Before moving on to combining cognitive and behavioural elements with brain 

organizational principles and investigating mechanistic organizational principles however it is 
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important to keep a number of key concepts in mind throughout this thesis. First and foremost, 

we need to distinguish between different types of connectivity analyses. 

1.1 Structural	connectivity	

Structural connectivity refers to physical connections in the brain, either at the synaptic level, 

or at the level of axons or even the dense connection highway of the corpus callosum as a whole. 

Often these connections are investigated in humans in-vivo using some type of diffusion 

weighted imaging such as Diffusion Tensor Imaging (DTI). These techniques are generally 

intended to measure dispersion or diffusion of water molecules in order to visualize the white 

matter fibre structure (e.g. myelin) of brain connections. Assuming that connections in the brain 

are continuously forming and changing this is a valuable technique to study development of 

brain networks. Thus, this method can be particularly promising to study neurodevelopmental 

conditions such as autism or ADHD. Studies have for example found evidence that these white 

matter tracts might be developing along different trajectories in a neurodevelopmental condition 

such as autism (Courchesne, 2004; Courchesne et al., 2007; Courchesne, Campbell, & Solso, 

2011). Specifically, that there might be an early overgrowth combined with later undergrowth, 

or even a regression (Courchesne, 2002, 2004; Courchesne et al., 2001; Courchesne, Carper, & 

Akshoomoff, 2003). Differences in growth patterns and in synaptic pruning (Craik & Bialystok, 

2006; Low & Cheng, 2006) are likely to result in different structural neural networks.  

 

Recent reviews of connectivity studies in autism suggest that there are indeed connectivity 

differences that might characterize the condition (Rane et al., 2015; Vissers, Cohen, & Geurts, 

2012). The patterns that are mostly reported are of decreased connectivity and an increase in 

diffusivity, yet the overall picture seems heterogeneous and somewhat dependent on 
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methodologies (Vissers et al., 2012). Although the majority of connectivity research in autism 

has focused on functional connectivity it is likely that differences in structural connectivity 

could underlie differences in functional connectivity (Greicius, Supekar, Menon, & Dougherty, 

2009). 

1.2 Functional	connectivity	

Functional connectivity is best defined as a temporal correlation in the activity between two 

spatially different regions (Friston, Frith, Liddle, & Frackowiak, 1993; Zuo et al., 2010). When 

using fMRI this refers to a correlation in the blood oxygenated level dependent (BOLD) 

response between different brain regions. However, in an electrophysiological sense, this can 

also refer to phase lagged relations in electrical field potentials (such as measured with 

electroencephalography) over time between different recording sites. The complete functional 

architecture of the brain is often referred to as the brain’s functional 'connectome’ (Biswal, 

Eldreth, Motes, & Rypma, 2010; Seung, 2011). The general idea is that complex processing 

requires different brain regions to work together (e.g. synchronize or correlate their activity). 

In individuals with autism this type of integration of multiple systems might be affected or 

atypical (Belmonte et al., 2004). In a recent review of the literature on atypical functional in 

autism it was evident that, since connectivity was suggested as a target for research, there has 

been an explosion of connectivity theories concerning autism (Vissers et al., 2012). One 

prominent theory postulates that autism is characterized by local over-connectivity combined 

with global underconnectivity (Belmonte et al., 2004). Sadly, the methods and findings have 

been as heterogeneous as the spectrum itself (Vissers et al., 2012). What is clear is that there is 

a diverse pattern of connectivity differences that might not be fully captured solely in terms of 

“local” or “global” connectivity differences. 
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1.3 Structural	covariance	

There is also a third, somewhat intermediate, level of analysis called structural covariance 

analysis, which technically should not be considered connectivity in a pure sense, but which 

does tell us something about brain organization. This recently emerging method refers to the 

technique of covarying inter-individual differences in neural anatomy (Alexander-Bloch, 

Giedd, & Bullmore, 2013; Evans, 2013). Generally, a single (gray-matter based) anatomical 

property such as cortical thickness or regional volume is used to construct a correlation matrix 

for one or several groups by taking the cross correlation of that anatomical property for a single 

region with all other regions. This correlation thus reflects the extent to which the neuroanatomy 

of a certain region is related to the neuroanatomy of other regions. As such it serves as an 

intermediate method of network analysis between functional and structural connectivity. The 

obtained correlation matrices can subsequently be subjected to network analysis. Structural 

covariance networks, in a neurotypical population, have been shown to strongly overlap with 

networks derived from purely structural measures such as diffusion weighted imaging (Gong, 

He, Chen, & Evans, 2012). It is likely that these networks are strongly related to networks 

derived from functional connectivity analysis (Alexander-Bloch, Giedd, et al., 2013).  

 

In addition, structural covariance networks have been shown to be partly heritable (Schmitt et 

al., 2009) and follow a pattern of coordinated maturation (Alexander-Bloch, Raznahan, 

Bullmore, & Giedd, 2013; Raznahan et al., 2011; Zielinski, Gennatas, Zhou, & Seeley, 2010). 

With respect to neurodevelopment, structural covariance networks might provide a relatively 

easy way to investigate potential differences in brain network development as any differences 

are likely the result of differing developmental trajectories (e.g. one is effectively measuring 

some stage of this shared developmental trajectory). This can be particularly interesting in 
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studying coordinated development of brain networks when for example comparing two 

neurodevelopmental groups. The advantage of structural covariance analysis is that it focuses 

on this coordinated structure of the entire brain as opposed to zooming in on a specific structure.  

 

Furthermore, structural data on which these networks are based is much more widely available, 

analytically less computationally intensive and arguably less sensitive to noise compared to 

functional imaging (such as motion artefacts). For example, in autism, structural covariance 

analysis has shown that in regions relevant for social and sensorimotor processing there is a 

regional or nodal decrease in centrality (Balardin et al., 2015). Meaning that these regions are 

less strongly embedded in the global brain network in individuals with autism. Furthermore, 

speech and language impairments in autism have also been associated with differences in 

structural covariance properties (Sharda, Khundrakpam, Evans, & Singh, 2014).  

 

A caveat of using structural covariance analysis that should be emphasized is that the resulting 

structural covariance network is based on the group-wise covariance. Thus, individual level 

data is lost at this point. Tools to assess individual level structural covariance are being 

developed but for the present work we focused on existing methodology. It should be noted 

however that the group-level networks derived from structural covariance analysis show high 

overlap with functional and structural connectivity derived networks (Alexander-Bloch, Giedd, 

et al., 2013). As new tools to assess individual level structural covariance become available 

they will be applied to the data outlined in this thesis as well. 

 

Thus, there are a number of different ways to assess changes to the network of neural 

connections that is the human brain. In addition to the three broad domains described above 
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there are a number of methods to quantify organizational properties of brain networks. In this 

thesis we will mainly use two of those: graph theory and independent component analysis 

(ICA). Graph theory is described in detail elsewhere (Bullmore & Sporns, 2009; Mark 

Newman, 2010; Sporns, 2011) but a brief overview of the most commonly used measures and 

their mathematical underpinning is provided in the Supplementary material (Appendix A). 

Within ICA there are yet more different parameters and sub-domains. Throughout this thesis 

the most commonly used implementation by fsl (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) is 

utilized. This implementation is described in more detail by Christian Beckman and colleagues 

(Beckmann, DeLuca, Devlin, & Smith, 2005). Where applicable each individual chapter 

describes the exact methods and parameters used. 

	

Much like any other type of network, components of brain networks tend to be specialized to 

specific functions, yet they clearly do not operate in isolation. This is evident from our day to 

day interaction with the world around us. Human (social) behaviour undoubtedly arises as a 

complex interaction between a constantly changing environment and our responses to it. In such 

a dynamic and complex system, it seems unlikely that our responses are driven by a single 

specialized brain region, but more likely by a complex and dynamic system. Thus, the need to 

understand the brain as a complex network becomes ever more important. In that respect, there 

are numerous factors that could potentially influence the underlying architecture and 

subsequent emerging functionality of brain networks. Looking at three specific factors 

(coordinated developmental maturation, genetic contributions to cortical organization and the 

acute effects of hormones) this thesis examines the broad question of how brain network 

organization is affected in developmental psychopathology, specifically in relation to autism.  
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1.4 Brain	morphology	in	atypical	development	

The first influence on brain networks addressed in this thesis is how coordinated maturation of 

different parts of the brain might give rise to altered morphology in two developmental 

conditions; autism and ADHD. These two conditions are of particular interest because, while 

they are considered distinct conditions from a diagnostic perspective, clinically they share 

phenotypic features and have high comorbidity and genetic overlap (Leitner, Neuroscience, & 

Leitner, 2014; Rommelse et al., 2010). Studying both conditions in conjunction might thus shed 

light on general principles of atypical development as well as unique features for both autism 

and ADHD. Regardless of this overlap, most studies have focused on only one condition, with 

considerable heterogeneity in their results. The rationale for combining the two was that a dual-

condition approach might help elucidate the shared and distinct neural characteristics 

(Dougherty, Evans, Myers, Moore, & Michael, 2015).  

 

Using structural covariance analysis, Chapter 2 discusses this overlap between autism and 

ADHD. In this chapter, we thus broadly address the question of whether there is a converging 

or a diverging pattern of coordinated developmental maturation between the two developmental 

conditions, with specific emphasis long-range and short-range connectivity patterns. It has been 

speculated that individuals with autism may have a disruption in the balance of these two types 

of connections (Belmonte et al., 2004). Specifically, it has been hypothesized that individuals 

with autism have increased local (short-range) connections at the expensive of global (long-

range) connections. This hypothesis finds evidence from behavioural studies that for example 

show increased attention to detail at the expense of more global information integration (Frith 

& Happé, 1994). Although there are many studies that have reported inherent connectivity 
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differences that would point to a generally altered pattern of brain organization, to date these 

have not been captured in a single explanatory framework (Vissers, Cohen, & Geurts, 2012). 

 

Several studies on ADHD also suggest alterations in cortical organization (Durston, Eickhoff, 

Konrad, & Eickhoff, 2010; Konrad & Eickhoff, 2010). Yet again, there does not appear to be 

clear uniform pattern in these findings. The idea of disruptions in long-range versus short-range 

connectivity is one of the few ideas that finds resonance in both conditions (Kern et al., 2015) 

and which might provide a more unified framework. To address this question, graph theory was 

used to analyse topological properties of structural covariance networks across both conditions 

and relative to a neurotypical (NT; n=87) group using data from the ABIDE (autism; n=62) and 

ADHD-200 datasets (ADHD; n=69). Regional cortical thickness was used to construct the 

structural covariance networks. In these covariance networks we studies the relationship 

between regional Euclidean distance and the relative extent of their group-wise covariance. The 

assumption here is that regions that share a developmental trajectory have higher group-wise 

covariance and that a shared developmental trajectory is a potential marker for underlying 

functional or structural coherence between regions. 

 

Having examined structural covariance, based upon cortical thickness covariance networks in 

children with autism, we next turned our attention to study a group of adults with autism. 

Fortunately, the adult data-set that we are working with gives us the opportunity to answer an 

additional and vital question in autism research: is there a moderating effect of biological sex 

on these potentially altered developmental trajectories? There have been several theories that 

have aimed to capture the known male bias in autism diagnoses into a coherent framework 

(Baron-Cohen, 2002; Bejerot et al., 2012). On one hand, there is the theory of autism as being 
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an extreme form of the male brain (Baron-Cohen, 2002), which broadly states that normative 

neural and cognitive sex differences might be exaggerated towards the extreme male end in 

individuals with autism. On the other hand there is a more recent theory that describes autism 

in terms of gender incoherence (Bejerot et al., 2012). In this account individuals with autism 

would show a phenotype that falls in-between the normative sex differences (and to some 

extend perhaps even more closely resembles female patterns). Both accounts and their 

respective predictions for brain organization principles are described in more detail in Chapter 

4. Thus, Chapter 4 discusses not only how some of the findings from Chapter 2 progress into 

adulthood, but also addresses the potential moderating effects of biological sex in adults with 

autism. A further question that emerges from the known male bias in autism and the resulting 

relation to social behaviour is how sex hormones come into play. This question is addressed in 

more detail in Chapters 6 and 7.  

 

1.5 Genetic	contributions	to	altered	brain	morphology	

Chapter 3 builds on work done in Chapter 2 and extensively addresses how (and which) genetic 

risk factors for autism are associated with the underlying differences in cortical morphology. 

We specifically asked how genes contribute to differences in cortical thickness in autism. 

Differences in cortical morphology - in particular cortical volume, thickness and surface area - 

have been reported extensively in individuals with autism (Ecker, 2016; Ecker, Ginestet, Feng, 

Johnston, Lombardo, Lai, Suckling, Palaniyappan, Daly, Murphy, Williams, Bullmore, Baron-

Cohen, Brammer, & Murphy, 2013; Ecker, Ronan, et al., 2013; Lai et al., 2014) and they are 

the building blocks on which the structural covariance analysis of Chapters 2 and 4 are 

effectively based. However, it is unclear what genetic variants implicated in autism contribute 
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to these differences. Here, we ask: what are the genetic determinants of global cortical thickness 

differences (ΔCT) in children with autism? We used Partial Least Squares Regression (PLSR) 

on structural MRI data from 62 children with autism (cases) and 87 matched typically 

developing control individuals (controls) and cortical gene expression data from the Allen 

Institute for Brain Science (AIBS) to identify genes that contribute to global differences in 

cortical thickness in autism. This data-driven approach provides weights for the association of 

each gene with ΔCT. Analysing these gene weights we explored enrichment with a number of 

different classes of genetic risk in autism. Given the data-driven nature of this approach we also 

validated our discovery findings in two independent MRI datasets from the second release of 

ABIDE. 

1.6 Brain	Function	

Although not a major part of this thesis atypical brain function in autism is also briefly explored 

by means of EEG. Several studies have shown atypical power spectral density patterns in the 

EEG frequency bands of individuals with autism. We hypothesized that altered morphology, as 

outlined in Chapters 2-4, would ultimately lead to alterations in functional organization. In 

addition, we speculated that the spectral density differences observed in the autism literature 

might in fact be sustained by alterations in functional connectivity. There is a large and growing 

body of literature outlining theories of altered functional connectivity in autism that has been 

reviewed in detail elsewhere (Vissers et al., 2012). In the present study, we utilized EEG to 

study potential difference in connectivity, as measured by the weighted phase lag index (WPLI), 

as a potential underlying mechanism for altered power spectral density. 
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1.7 Acute	effect	of	hormones	on	intrinsic	brain	functioning	

The third factor, that of hormonal influences, is addressed in Chapters 6 and 7. As briefly 

discussed in Chapter 4 in relation to effects of biological sex, hormones might play a pivotal 

role in autism. They have however, a much wider role to play social behaviour. We focused 

specifically on two hormones and their effects on functional connectivity: oxytocin and 

testosterone.  

 

The peptide hormone oxytocin has often been speculated as a ‘natural’ treatment for namely 

the social difficulties associated with autism (Meyer-Lindenberg, Domes, Kirsch, & Heinrichs, 

2011). In popular culture it has even been termed the ‘love’, ‘trust’ or ‘cuddle’ hormone. 

Although early studies have shown some generally positive effects to social behaviour in autism 

(Auyeung et al., 2015), the field in general is riddled with paradoxes of positive and negative 

effects (Bethlehem, Baron-Cohen, van Honk, Auyeung, & Bos, 2014). Part of this 

heterogeneity and apparent contradictory body of work might be resolved by gaining a better 

understanding of oxytocins baseline effect on the brain. Specifically, it may influence various 

human behaviours by altering brain network dynamics (Bethlehem, van Honk, Auyeung, & 

Baron-Cohen, 2013). Previous oxytocin studies are largely male-biased and often constrained 

by task-based inferences. In Chapter 6 we thus investigated the impact of oxytocin on resting 

state connectivity between subcortical and cortical networks in women. We collected resting 

state fMRI data on 26 typically-developing women 40 minutes following intranasal oxytocin 

administration using a double-blind placebo-controlled crossover design. Independent 

components analysis (ICA) was applied to examine connectivity between networks. An 

independent analysis of oxytocin receptor (OXTR) gene expression in human subcortical and 

cortical areas was carried out to determine plausibility of direct oxytocin effects on OXTR  
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The second hormone we investigated was testosterone. Testosterone has often been speculated 

to play an important role in autism given that the condition is male based and finds some 

indications of what could be described as ‘extremely male brain phenotype’ (Baron-Cohen, 

2002). It was recently shown that part of these characteristics might be driven by prenatal over-

exposure to steroidogenic hormones such as testosterone (Baron-Cohen et al., 2015).  Within 

the framework of the present research it was unfortunately not possible to specifically 

investigate the direct effect of pre-natal testosterone on brain morphology. However, others 

have already shown that it can have profound effects on grey matter morphology in a sexually 

dimorphic way (Auyeung, Lombardo, & Baron-cohen, 2013; Lombardo, Ashwin, Auyeung, 

Chakrabarti, Taylor, et al., 2012) as well as more general effect on brain connectivity and 

organization (Koolschijn, Peper, & Crone, 2014; Peper, Koolschijn, & Ce, 2012; Peper, van 

den Heuvel, Mandl, Pol, & van Honk, 2011). Outside of the influence during brain development 

testosterone is known to have acute effects on social behaviour (Bos, Panksepp, Bluthé, & van 

Honk, 2012; Van Honk et al., 2012; van Honk, Bos, & Terburg, 2014). Within the framework 

of the present research it is interesting to note that testosterone and oxytocin have been 

speculated to have broadly opposing effects on brain dynamics (Bos et al., 2012). Specifically, 

recent evidence suggests that testosterone can decrease the functional coupling between 

orbitofrontal cortex (OFC) and amygdala (van Wingen, Mattern, Verkes, Buitelaar, & 

Fernández, 2010; Volman et al., 2016; Volman, Toni, Verhagen, & Roelofs, 2011). 

Theoretically this decoupling has been linked to a testosterone-driven increase of goal-directed 

behaviour in case of threat, but this has never been studied directly. In addition, much like 

oxytocin, testosterones effects have often been speculated to be context dependent (van Honk, 

Terburg, et al., 2011). Thus, in addition to studying testosterone in this very specific context of 
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goal-directed threat behaviour, we also sought to assess its basic effect on resting-state brain 

activation and connectivity in a placebo-controlled crossover administration study. 

1.8 Framework	

As disparate as these three factors (genetic, hormones and sex) might seem they are all 

interconnected. Like cogs in the big wheel of human behaviour (Figure 1.1). 

Neurodevelopmental conditions such as autism or ADHD provide a unique window into these 

interactions as they show where some interactions might have been atypical. Although it is 

beyond the scope of any thesis to analyse the totality of this framework and all its interactions 

we sought to highlight some of them. 

	
Figure 1.1: Framework 

Numbers denote chapters in this thesis, letters denote the 3 main elements of the framework presently being 

discussed (A: Genes B: Gender C: Hormones). Thus; Chapter 2 discussed brain morphology in atypical 
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development, Chapter 3 discusses the influences of genes on this altered morphology, Chapter 4 discusses the 

interaction between biological sex and atypical development, Chapter 5 discusses potential altered brain function 

in atypical development, Chapter 6 discusses how hormones interaction with brain function to potentially alter 

behaviour in a manner that interacts with atypical development, and lastly Chapter 7 discusses how hormones can 

operate in a narrow and specific context to modify behaviour. 
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Chapter	2 Altered	structural	brain	organization	

in	atypical	development	

2.1 Introduction	

Autism is characterized by deficits in social communication alongside unusually restricted 

interests and repetitive behaviours, difficulties adjusting to unexpected change, and sensory 

hypersensitivity (American Psychiatric Association, 2013). Despite a large body of research to 

understand its underlying neurobiology (Loth et al., 2015), no distinct set of biomarkers for 

autism has yet been established. With respect to the neuroimaging literature and specifically 

network organization, several authors have suggested potential differences in brain 

organization in autism compared to neurotypical control groups with little consensus. There is 

for example debate about whether autism is characterized by neural over- or under-connectivity 

(Belmonte et al., 2004; Brock, Brown, Boucher, & Rippon, 2002; Courchesne & Pierce, 2005; 

Just, Cherkassky, Keller, & Minshew, 2004; Rubenstein & Merzenich, 2003). A now widely 

discussed hypothesis is that people with autism suffer from atypical connectivity (Assaf et al., 

2010; Cherkassky, Kana, Keller, & Just, 2006; Courchesne & Pierce, 2005; Just, Cherkassky, 

Keller, Kana, & Minshew, 2007). Specifically, there is a tendency for autism to be associated 

with excess local or short-range connectivity, relating to enhanced local processing. This is 

thought to be accompanied by decreased global or long-range connectivity, relating to impaired 

integration as manifested in ‘weak central coherence’. Thus, a prominent theory of neural 

connectivity in autism is of global under- and local over-connectivity (Belmonte et al., 2004; 

Vissers et al., 2012). Other, more recent theories have pointed towards more network dependent 
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levels of dysconnectivity. Zielinski et al. (2012) reported a connectivity reduction in the 

salience network and posterior regions of the DMN, whereas they report frontal DMN regions 

to be over-connected. This notion of network dependent alterations was recently confirmed by 

a large structural covariance study in the ABIDE dataset (Long, Duan, Chen, Zhang, & Chen, 

2016). Interestingly, Long and colleagues also show how this network dependency seems to 

change with age. Lastly, regional covariance alterations in autism have also been demonstrated 

to persist in white matter microstructure (Dean et al., 2016). Dean and colleagues show an 

overall decreased coherence in individuals with autism that might suggest a broader pattern of 

dysconnectivity. 

 

ADHD on the other hand is characterised by a triad of symptoms: hyperactivity, impulsive 

behaviour and inattentiveness (American Psychiatric Association, 2013). Studies using 

connectivity analyses have attempted to shed light on its underlying neurobiology and have 

found both decreased and increased functional connectivity in specific networks (Tomasi & 

Volkow, 2012), altered connectivity in the default mode network (DMN) (Fair et al., 2010) and 

differences in cross-network interactions (Cai, Chen, Szegletes, Supekar, & Menon, 2015). 

These effects might be smaller than the literature suggests (Mostert et al., 2016).  

 

Autism and ADHD show high comorbidity and phenotypic overlap (Leitner et al., 2014; 

Rommelse et al., 2010; Rommelse, Geurts, Franke, Buitelaar, & Hartman, 2011), and are both 

also potentially marked by differences in connectivity. There have even been suggestions that 

these connectivity differences lie on a similar dimension of local and global connectivity 

imbalances (Kern et al., 2015). In addition, both conditions have been associated with 

alterations in cortical development (Hardan, Libove, Keshavan, Melhem, & Minshew, 2009; 
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Shaw et al., 2007) that could in turn give rise to differences in the topological organisation of 

brain networks. In the present study, we aimed to identify distinct as well as overlapping 

patterns of brain organisation that might shed a light on the underlying architecture of both 

conditions, giving rise to divergent yet related findings using structural covariance analyses.  

 

Structural covariance analysis involves covarying inter-individual differences (i.e. coordinated 

variations in grey matter morphology) in neural anatomy across groups (Alexander-Bloch et 

al., 2013; Evans, 2013) and is emerging as an efficient approach for assessing structural brain 

organization. A key assumption underlying this methodology is that morphological correlations 

are related to axonal connectivity between brain regions, with shared trophic, genetic, and 

neurodevelopmental influences (Alexander-Bloch et al., 2013). Thus, structural covariance 

network analysis is not the same as analysis of functional connectivity or structural networks 

obtained with diffusion imaging, yet it has shown moderately strong overlap with both 

(Alexander-Bloch et al., 2013; Gong et al., 2012). In addition, structural covariance networks 

are highly heritable (Schmitt et al., 2009) and follow a pattern of coordinated maturation 

(Alexander-Bloch et al., 2013; Raznahan et al., 2011; Zielinski et al., 2010). With respect to 

neurodevelopmental conditions, structural covariance networks might provide a way to 

investigate potential differences in brain network development. Differences between 

neurotypical individuals and individuals with a developmental condition are likely the result of 

divergent developmental trajectories in coordinated development of different brain networks. 

The advantage of structural covariance analysis is that it focuses on this coordinated structure 

of the entire brain as opposed to focusing on a specific structure. In addition, structural data on 

which these networks are based are widely available, analysis is less computationally intensive 

and arguably less sensitive to noise, compared to functional imaging.  
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Previous investigations of structural covariance in autism have shown regional or nodal 

decrease in centrality, particularly in key regions subserving social and sensorimotor 

processing, compared to neurotypical individuals (Balardin et al., 2015). Furthermore, speech 

and language impairments in autism have been associated with differences in structural 

covariance properties (Sharda, Khundrakpam, Evans, & Singh, 2014). Studies of functional 

connectivity networks in autism are more abundant (Vissers et al., 2012). In ADHD, structural 

covariance analyses have been scarce. A study that specifically investigated structural 

covariance in drug-naïve adolescent males found that grey matter volume covariance was 

significantly reduced between multiple brain regions including: insula and right hippocampus, 

and between the orbito-frontal cortices (OFC) and bilateral caudate (Li et al., 2015). Similar to 

the autism literature, studies that have explored functional connectivity differences in ADHD 

are more abundant (Konrad & Eickhoff, 2010).  

 

While autism and ADHD are considered distinct conditions from a diagnostic perspective, 

clinically they share some common phenotypic features (such as social difficulties, atypical 

attentional patterns, and executive dysfunction) and have high comorbidity (Leitner et al., 2014; 

Rommelse et al., 2010, 2011). DSM-5 (American Psychiatric Association, 2013) now allows 

comorbid diagnosis of autism and ADHD, acknowledging the common co-occurrence of these 

conditions. Regardless, most studies to date have focused on each condition separately, with 

considerable heterogeneity in results. Taking a dual-condition approach might help elucidate 

shared and distinct neural characteristics. The proposal for a dual-condition approach is 

supported by a recent review that found both distinct as well as overlapping neural 

characteristics between autism and ADHD (Dougherty et al., 2015). There is also increasing 
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interest in the clinical and research communities to investigate autism and ADHD along a 

continuum of atypical neural connectivity (Kern et al., 2015).  

 

In the present study, we used the graph theoretical framework to analyse properties of structural 

covariance networks across autism and ADHD, relative to an age and gender matched 

neurotypical control (NT) group. One study has taken a similar approach using resting-state 

fMRI and diffusion weighted tractography and reported marked connectivity differences 

between network hubs, indicating a disruption in rich-club topology. Rich-clubs are defined as 

highly connected parts of a network that tend to connect to other highly connected parts. 

Specifically, Ray and colleagues (Ray et al., 2014) report a decrease in connectivity within the 

rich-club but increased connectivity outside the rich-club in ADHD. The autism group showed 

an opposite pattern of increased connectivity within rich-club connectivity. These findings may 

fit with the idea of increased local connectivity in autism (i.e., increased within rich-club 

connectivity), with ADHD showing the opposite pattern. Yet, these findings could also mediate 

increased strength in long-range connections within the rich-club. In the present study we aimed 

to further investigate the relation between distance and connectivity by looking at group-wise 

cortical thickness covariance as a function of Euclidean distance. In addition, we investigate 

potential overlap in modular and hub organization as assessed by structural covariance network 

analyses.  
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2.2 Methods	

2.2.1 Image	processing	

Structural T1-weighted MPRAGE images were collected from two publically available 

datasets: ABIDE (http://fcon_1000.projects.nitrc.org/indi/abide/) and ADHD-200 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/). From these datasets, 3 diagnostic groups 

(autism, ADHD and neurotypical individuals) of males between the ages of 8 and 12 years old 

were selected. The initial sample consisted of 348 eligible individuals. The structural T1-

MPRAGE data were pre-processed using Freesurfer v5.3 to estimate regional cortical thickness. 

Cortical reconstructions were checked by three experienced independent researchers. Images 

were included in the analyses only when a consensus on the data quality was reached (see 

Supplementary Materials for more details on data selection). The cortical thickness maps were 

automatically parcellated into 308 equally sized cortical regions of 500mm2 that were 

constrained by the anatomical boundaries defined in the Desikan-Killiany atlas (Desikan et al., 

2006; Romero-garcia, Atienza, Clemmensen, & Cantero, 2012). The backtracking algorithm 

grows subparcels by placing seeds at random peripheral locations of the standard atlas regions 

and joining them up until a standard pre-determined subparcel size is reached (Romero-garcia 

et al., 2012). It does this reiteratively (i.e., it restarts at new random positions if it fails to cover 

an entire atlas region) until the entire atlas region is covered. Individual parcellation templates 

were created by warping this standard template containing 308 cortical regions to each 

individual MPRAGE image in native space. A key advantage of warping of the segmentation 

map to the native space relates to the attenuation of possible distortions from warping images 

to a standard space that is normally needed for group comparisons. Lastly, average cortical 

thickness was extracted for each of the 308 cortical regions in each individual participant.  
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As a secondary post-hoc step in quality control, individuals that had an average variability in 

cortical thickness of more than two standard deviations away from the group mean were 

removed from further analysis.  After quality control and matching on age and IQ, our final 

sample consisted of 218 participants: ADHD (n=69, age = 9.99 ±1.17, IQ = 107.95 ±14.18), 

autism (n=62 age=10.07 ±1.11, IQ = 108.86 ±16.94) and NT (n=87, age = 10.04 ±1.13, IQ 

= 110.89 ±10.39). See supplementary Figure B.1 for an overview and Table B.1 for details on 

scanner site and matching procedure. Scanner site was regressed out from raw cortical thickness 

estimates across groups. To aid interpretation of the cortical thickness estimates, the residuals 

from this regression where added to the sample mean. Group-wise structural covariance 

matrices were then computed by taking the inter-regional Pearson correlation of these parcel-

wise cortical thickness estimations. This was done within each group to create group-wise 

structural covariance matrices. 

2.3 Data	Analysis	

2.3.1 Group	differences	of	distance	effects	in	CT	covariance	

To determine potential group effects on the CT covariance for short and long-range 

associations, we investigated the linear slope differences in the relationship between correlation 

strength and Euclidean distance between nodal centroids. Consequently, one-way analysis of 

covariance (ANCOVA) was performed with the diagnosis group as a factor and Euclidean inter-

regional distance as a covariate. For significant group effects, post-hoc paired t-tests were used 

to identify which slopes were significantly different from each other. 
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2.3.2 Graphs		

To construct adjacency matrices for graph analyses, the minimal spanning tree (van Wijk et al., 

2010) was used as the threshold starting point for building covariance networks at a 

representative density of 10%. The density of a network relates to the fraction of edges present 

in the network compared to the maximum possible number of edges. Graph analyses were 

performed across densities (0-15%) and between-group differences were compared using non-

parametric permutation tests on paired group comparisons (1000 permutations). Thus, 

permuted networks were constructed by permuting the underlying cortical thickness estimates 

for each group and subsequently constructing adjacency matrices for each permutation to create 

a null distribution. In view of the large number of comparisons across the 308 nodes, differences 

in local measures were subjected to a False Discover Rate (FDR) non-linear multiple 

comparison correction with alpha set at < 0.025 to allow simultaneous correction for two-tailed 

testing (Benjamini & Hochberg, 1995).  

	

2.3.3 Degree,	cortical	thickness	and	wiring	cost	analysis	

Nodal degree reflects the number of edges connecting each node. Nodes with the highest degree 

of the network are defined as hubs. The present study considered a wide range of degree 

thresholds to reduce bias related to the choice of an arbitrary set of hubs (ranging from 0 to 

100% of the nodes). Thus, group differences in degree and CT of the hubs of the networks were 

evaluated for each degree threshold. To decrease the noise effect, we calculated the cumulative 

degree distribution as 𝑃 𝑘 = 𝑝(𝑘&)()*( .   
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Inter-regional distance (𝑑,-) between two nodes i and j was estimated as the Euclidean distance 

between the centroids, 𝑑,- = (𝑥, − 𝑥-)0 + (𝑦, − 𝑦-)0 + (𝑧 − 𝑧-)0, where x, y and z represent 

the coordinates of the centroid of each region in MNI space. The mean connection distance or 

wiring cost (𝑊5) of a network was computed as, 𝑊5 = ( 𝑛𝑒𝑡,- ∗ 𝑑,-,,- ) 𝑁, where net(i,j) is 

equal to 1 if regions i and j are connected, 0 otherwise and N is the total number of connections 

of the network. 

2.3.4 Modular	agreement	

Modular agreement was evaluated by quantifying the proportion of pairs of regions that were 

classified within the same module in community partitions (using iterating Louvain clustering 

to obtain modular partitions) associated with different diagnostic groups. Thus, two groups will 

show high modular agreement if network modules mainly include the same set of brain regions 

in both groups. As modular agreement is highly affected by intrinsic trivial characteristics of 

the modular partition, z-scores were used as a measure of how over- or under- represented a 

given metric was compared with random community partitions.  

 

In order to test against appropriately designed surrogate data, statistical significance was 

assessed against a null distribution built from metric values computed in 1000 random 

communities generated by preserving the number of modules, size of the modules, spatial 

contiguity and hemispheric symmetry of the real community partition. The 95th quantile of the 

resulting distribution was used as a statistical threshold to retain or reject the null hypothesis of 

no significant modular agreement between diagnostic groups. Moreover, differences in modular 

agreement between pairs of groups were statistically tested using a similar procedure. Indices 

of modular agreement of each pair of groups were subtracted and compared with the differences 
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of modular agreement derived from the 1000 random communities in each pair of groups. 

Similarly, the 95th quantile of the resulting distribution was used as a statistical threshold to 

retain or reject the null hypothesis of no modular agreement differences between pairs of 

diagnostic groups. Significant results were corrected for multiple comparisons using FDR 

(Benjamini & Hochberg, 1995). 

2.4 Results	

2.4.1 Distance	covariance	topology	

In all groups the group-wise correlation strength decreased with increased anatomical distance. 

Results from the analysis of variance show a main effect of group F(2,141828) = 2192.76, 

p<0.0001. Post-hoc analyses indicated that all three groups had a small but significantly 

different slope: ADHD < Neurotypical (p-value < 10-15), Autism < Neurotypical (p-value < 

0.005) and ADHD < Autism (p-value < 10-15). Figure 2.1 shows the linear relation of the inter-

regional correlation as a function of Euclidean distance and the mean and confidence intervals 

of the slope estimates. In the ADHD group, inter-regional correlation decreased the fastest 

whereas the neurotypical group shows the smallest decrease. This result shows that both autism 

and ADHD have relatively weaker long-range covariance and stronger local covariance. 

Compared to the neurotypical group both groups show a balance that more strongly favors 

short-range over long-range covariance. 
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Figure 2.1: Inter-regional correlation strength as a function of Euclidean distance.  

Panel A shows the inter-regional correlation over the entire distance range. Panel B shows the mean slope for each 

group and the 95% confidence interval of the mean slope.  

	

2.4.2 Degree	

After constructing the covariance matrices (Figure 2.2A), the degree of each node was 

computed (Figure 2.2B) and the top 10% nodes with highest degree were retained as hubs for 

visualization (Figure 2.2C). Most of the hubs were located within frontal and parietal cortices 

in the three groups. In contrast, nodes with lower degree were mainly placed in the occipital 

cortex. There were several nodes that showed degree differences between groups, but these 

were not consistent across degree densities. We did however observe marked differences 

between groups in the overall degree distribution. Figure 2.3 show the cumulative degree 

distribution of each group. Interestingly, hubs of the autism group exhibited significantly lower 

degree than both neurotypical (p < 0.025; for degree values from 83 to 88) and ADHD (p < 

0.025; for degree values from 64 to 89). These difference were corrected for multiple 

comparisons for the range of higher degree nodes (FDR correction in the degree range from 50 

to 90). 
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Figure 2.2: Overview of procedure and metrics.  

Panel A shows the binary adjacency matrices for the three groups thresholded at 10% above the minimal spanning 

tree. Subsequent graph construction is based on these thresholded matrices. Panel B display the topological 

distribution of nodal degree at 10% density. Panel C illustrates the networks with nodes that have the highest 

degree (top 10%).  
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Figure 2.3: Cumulative degree distribution.  

Lines represent the proportion of nodes in the network with a degree higher than k (hubs) in each group. Bars 

below the figure represent the areas where there is a significant difference between the groups. Hubs of the autism 

group showed significantly lower degree compared to the ADHD group (k-range: 83-88) and compared to the 

neurotypical group (k-range: 64-89).  

2.4.3 Wiring	cost	

In line with the group differences observed in the decay of cortical thickness correlation as a 

function of the inter-regional distance described above, the wiring cost analysis showed a 

significant decrease of the average distance between connected regions in the ADHD group 

compared with neurotypical (Figure 2.4; p <0.008), revealing a reduction of long range 

connections in the ADHD network. It should be noted however that there was an extremely 

large overlap between all three groups. 
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Figure 2.4: Violin representation of the mean inter-regional distance. 

The ADHD group has significantly lower connection distance compared to the neurotypical group. Mean is shown 

as a black dot with error bars representing 95% confidence intervals 

		

2.4.4 Cortical	thickness	as	a	function	of	degree	

Given that there were notable differences in degree distributions (i.e. hubs in the autism group 

had lower degree than the other groups; Figure 2.2) we chose to analyze both the absolute 

degree distribution and take a percentile that was based on the group itself. Although the autism 

and neurotypical group showed little difference in cortical thickness across the entire range of 

degrees with both methods, high degree nodes had significantly reduced cortical thickness in 
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the ADHD group (Figure 2.5). This suggests that there might be increased synaptic pruning in 

these hub regions in the ADHD group. 

	
Figure 2.5: Cortical thickness as a function of degree.  

Bars below the figure show the degree ranges where there is a significant difference between the respective groups.   

2.4.5 Modular	consistency	and	clustering	

To investigate similarities in global topology, we further evaluated the modular overlap 

between the community structure of the three groups. The modular overlap between all group-

wise comparisons were significantly higher than expected by chance (Figure 2.6), suggesting 

that a global scale there were no marked differences in structural covariance community 

structure. However, the Autism-ADHD group overlap was significantly lower than the 

Neurotypical-ADHD overlap (p <10-3). There was also a small non-significant effect for the 

Neurotypical-ADHD overlap compared to Neurotypical-Autism (p =0.04). This indicates that 
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although there were perhaps no massive topological differences in community structure, the 

autism and ADHD group differ more from one another than they do from the neurotypical 

group (i.e. there was lower modular agreement between autism and ADHD then there was 

between the other groups).  

	
Figure 2.6: Similarities in community structure across groups.  

Panel A illustrates the modular organization of the structural covariance network derived from each group. The 

colours show association of the region with a certain module. These colours are set for each group individually as 

not all groups have the same number of modules. Panel B displays the z-transformed modular overlap for each 

group-wise comparison, colour meshes are chosen to represent the group comparison. All overlap scores are 

significantly different from zero, indicating that nodes in one module are most likely part of the same module in 

both groups. Note that Autism-ADHD overlap was reduced compared to the NT-ADHD overlap. 

 

Lastly, we extended our main findings using covariance networks based on inter-regional 

correlation of the Local Gyrification Index (LGI). Structural covariance network based on LGI 

also showed a significant reduction of the nodal degree in highly connected nodes in Autism 
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compared with Neurotypical group (See Figure B.4). In line with the reduction of CT in the 

hubs of Autism and ADHD compared to Neurotypical groups described in Figure 2.5, we found 

a reduction of LGI in ADHD compared to Neurotypical groups for highly connected nodes. 

Overall, these results suggest that both thickness and gyrification of high degree nodes are 

particularly affected in these conditions. 

 

2.5 Discussion	

Comparing autism and ADHD, our findings reveal a complex topology of convergent yet 

distinct patterns of brain network organization. At a global level of community structure all 

groups show a significant degree of overlap, however the autism and ADHD group showed less 

similarity than they do compared to the neurotypical control group. The decay of cortical 

thickness correlation strength as a function of inter-regional distance was also markedly 

different for both clinical groups. Fitting with the idea of a local vs global connectivity 

difference in developmental conditions both the autism and ADHD group showed a pattern that 

diverges from the neurotypical control group. Yet, they do not appear to be in opposing 

direction. Both groups showed a significantly stronger decrease in correlation strength with 

increased distance relative to a control group.  

 

These finding suggest that in both conditions the topology favours short-range correlations over 

long-range correlations. This idea is prominent in the autism literature, but less so in the ADHD 

literature. For example, Schaer and colleagues observed increased covariance in cortical folding 

in individuals with autism in short-range but not in long-range connections (Schaer et al., 2013). 

It will be interesting for future studies on different modalities such as resting-state or DTI 
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imaging to see if potential connectivity differences follow a pattern similar to the present 

structural covariance properties. In addition, we found that the ADHD group had a marked 

decrease in cortical thickness in high degree regions compared to the other two groups. A 

previous study showed that children with ADHD exhibited reduced CT in fronto-parietal 

regions, but increased CT in occipital regions (Almeida Montes et al., 2013). In the present 

analysis cortical hubs were mainly located in fronto-parietal networks, thus this finding fits 

with the idea of overall reduced CT in those areas. Interestingly, Almeida-Montes and 

colleagues also show that some of these differences increase with age. This would also fit with 

previous work showing some delay in cortical maturation of cerebrum and specifically 

prefrontal cortex in children with ADHD (Shaw et al., 2007).  

 

A previous study indicated that wiring costs in autism might also fit in a model of increased 

local connectivity and decreased global connectivity in grey matter connections (Ecker, Ronan, 

et al., 2013). Thus, we extended our local versus global analysis to include wiring cost 

characteristics. We found that the ADHD group showed significantly reduced wiring cost. This 

is consistent with the notion of a network shift towards increased segregation (i.e. more local 

connections) at the expense of global integration (Deco, Tononi, Boly, & Kringelbach, 2015). 

We did not find a significant difference in the wiring cost for the autism group. The present 

approach to assess wiring costs differs significantly from the one taken by Ecker et al. (Ecker, 

Ronan, et al., 2013) (e.g., we use Euclidean distance between centroids of anatomically derived 

nodes compared to a measure of mean separation distance on the cortical sheet). It is possible 

that our approach might be too coarse to pick up wiring cost differences in the autism group. 

Our results do indicate a sharp reduction in the number of connections of the hubs regions in 

the autism network. Under-connected hubs could indicate a reduced capability of integrating 
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information over the long-range and across modalities, something that has often been 

speculated to be the case in autism (Happé & Frith, 2006). Again, future studies will have to 

show whether these patterns also emerge from connectomic data. 

 

Since changes in structural covariance are postulated to be a result of a prolonged 

developmental process, our findings also provide emerging evidence for a systematic difference 

in the developmental trajectory/profile of brain organization between these groups. However, a 

recent large cross condition analysis of potential genetic relationship showed only moderate 

genetic overlap between autism and ADHD (Lee et al., 2013). Thus, the true underlying cause 

for these differences is likely more indirect and could emerge from long-term differences in 

brain function. In relation to that, phenotypic overlap might perhaps also be sought in a more 

indirect causal relationship. Unfortunately, the present data does not allow a detailed analysis 

of phenotypic or trait overlap (due to the lack of overlapping measures between the two 

datasets). Leitner (2014) lists a number of converging point in ADHD and autism aetiology, 

perhaps most strikingly the difficulties with social interaction. Although the profile, and 

possibly the cause, of social difficulties likely differs between children with autism or ADHD 

problems with social interaction are found in both (Leitner et al., 2014).  Perhaps these have a 

concordant effects on brain networks as this is a critical element of brain development 

(Blakemore, 2010). 

 

Contrary to our predictions, and in contrast to a previous study (Ray et al., 2014) that used a 

different imaging modality, we did not find any significant differences in rich-club topology 

between any of the groups. The rich-club coefficient indicates that high degree nodes are more 

likely to connect to other high-degree nodes (sometimes summarised as ‘the rich cling 
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together’). Although the structural covariance networks were constructed from T1-MPRAGE 

data, we had expected to find overlap between the fMRI, DTI and our current results. It would 

be highly interesting to see how these differences develop further. Connectivity findings in 

adult autism and ADHD are notoriously heterogeneous (Konrad & Eickhoff, 2010; Vissers et 

al., 2012), and some developmental neuroanatomical differences might gradually change with 

age. The present data was restricted to a very specific age group and developmental changes 

continue long after this time frame. It would be interesting to see whether the currently observed 

lack of differences in structural covariance topology propagate in the same direction. More 

research is needed to assess these potential longitudinal changes in this population. 

 

Modular organization of the network of the three groups revealed no significant differences, 

but instead showed significant overlap. Therefore, network nodes belonging to one module in 

one group are likely to belong to the same module in the other group. Considered in the clinical 

context of overlapping phenotypes and high comorbidity, the present results strengthen the 

notion that these two conditions should not be studied in isolation. However, the two clinical 

groups (despite being significantly similar) show less modular similarity to one another than 

they do compared to a neurotypical group. However, both groups also showed significant 

overlap with the neurotypical group, suggesting that the neuroanatomical differences between 

the clinical and control groups operate on more fine-grained scales (such as might be observed 

in graph theoretical measures). This finding shows that when these groups are studied solely in 

contrast with a neurotypical group no difference might be observed on this metric.  

 

There are some caveats surrounding the current study. First, and in contrast to some studies, we 

used cortical thickness estimates to construct our structural covariance network, thereby 
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excluding sub-cortical regions from network analysis. Separate analyses of subcortical 

volumetric and covariance differences for the present data are however included in the 

supplementary materials. To be able to combine cortical and subcortical regions, some studies 

have used covariance of grey matter volume instead (Balardin et al., 2015). However, grey 

matter volume relies on the relationship between two different morphometric parameters, 

cortical thickness and surface area. Cortical thickness and surface area are both highly heritable 

but are unrelated genetically (Panizzon et al., 2009), leading to different developmental 

trajectories across childhood and adolescence (Herting, Gautam, Spielberg, Dahl, & Sowell, 

2015). The combination of at least two different sources of genetic and maturational influence 

into a unique descriptor of cortical volume may act as a confounding factor that hinders a clear 

interpretation in the context of cortical covariance based networks. This is particularly relevant 

in conditions such as autism and ADHD where differences in cortical thickness, cortical volume 

and surface area are highly heterogeneous (Ecker, Ginestet, Feng, Johnston, Lombardo, Lai, 

Suckling, Palaniyappan, Daly, Murphy, Williams, Bullmore, Baron-Cohen, Brammer, Murphy, 

et al., 2013; Wolosin, Richardson, Hennessey, Denckla, & Mostofsky, 2009).  

 

Furthermore, as outlined in the introduction, structural covariance analysis is based on group-

level data and we could thus not investigate any direct brain-behaviour relationship. In addition, 

although both the ABIDE and ADHD-200 are generally well phenotyped they do not share 

many overlapping behavioural measures that would allow more detailed analysis of potentially 

overlapping symptomatology. It could be the case that some of the findings here are in fact 

driven by subgroups within each condition that drive the group mean differences. 

Unfortunately, due to the nature of structural covariance analysis we are unable to fully 

disentangle that possibility.  
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Another potential caveat in clinical imaging studies is the interaction with medication. In the 

present sample only a small proportion of included subjects were reported to be on active 

medication (<5%). In the autism group these were predominantly anti-depressants (e.g. 

Fluoxetine), anti-psychotics (e.g. Risperidone) and in some cases psycho-stimulants (e.g. 

Methylphenidate). In the ADHD group these were predominantly psycho-stimulants (e.g. 

Methylphenidate). No information was available on the length of use or dosage. Although it 

seems unlikely that in this young age range there will have already been a sustained effect of 

medication use on cortical thickness, this cannot be fully ruled out in the present study. For 

reasons outlined above, structural covariance analysis does not lend itself to the analysis of 

small sub-groups. 

 

In light of the recent proliferation in graph theoretical studies, several semantic caveats should 

also be clarified to facilitate cross-comparisons of findings. While we have adopted the term 

"structural covariance" to characterise the macroscale connectome, the same terminology has 

also been used to describe structural networks that are indicative of atrophy patterns in 

neurodegenerative conditions (Seeley, Crawford, Zhou, Miller, & Greicius, 2009). In the latter 

approach, the covariance networks are typically derived from voxel-wise seed-based 

correlations, the seed being defined as a focal site of atrophy as found using voxel-based 

morphometry (VBM). Distinct from these restricted patterns of pathology-related networks, 

other studies have derived whole-brain networks on the basis of pairwise correlations between 

the structural morphology (i.e. volume, thickness, gyrification) across brain regions 

(Alexander-Bloch, Giedd, et al., 2013; Lerch et al., 2006; Mak, Colloby, Thomas, & O’Brien, 

2016). The second difference concerns the morphology of interest in deriving the structural 

networks. For instance, volume-based intensities are inherently limited by the geometric 
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convergence of surface area and cortical thickness (Ashburner & Friston, 2000), both of which 

may be underpinned by distinct genetic and developmental factors. In contrast, cortical 

thickness provides a physical property of the cortical mantle by explicitly modeling the 

boundaries between the white matter and pial surface (Fischl & Dale, 2000). Despite the 

differences in the construction of the networks, both approaches are similar in that the networks 

are derived at the group-level, thereby precluding single-subject analyses and/or correlations 

against clinical data. The central tenet of both approaches similarly rests upon the assumption 

that strong correlations - particularly those that exceed an arbitrary threshold -  reflect 

underlying connectivity between regions (Alexander-Bloch et al., 2013).  

 

Secondly, it is possible that in both publically available datasets, some participants might have 

been comorbid for the other condition (e.g., individuals in the ABIDE might have had comorbid 

ADHD, and vice versa). Although all individuals in these data-sets were diagnosed under the 

DSM-IV criteria, which does not allow this type of comorbidity, without the availability of 

more detailed diagnostic data, comorbidity or general phenotypic overlap cannot be ruled out 

completely. In addition, sample size restrictions would not allow a further subdivision within 

the presentation type of the ADHD group, which could be an interesting avenue for future 

research. Yet the primary aim of this study was to investigate overlap between the two 

conditions. If the present results were due to the individuals that shared this comorbidity, this 

would still support a common underlying neural architecture. Nonetheless, future longitudinal 

studies need to disentangle this overlap more precisely and in relation to specific phenotypic 

overlap as well as the trajectory of topological changes over time. 
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In sum, we found convergence between autism and ADHD, where both conditions show 

stronger decrease in covariance with increased Euclidean distance between centroids compared 

to a neurotypical population. The two conditions also show divergence. Namely, there is less 

modular overlap between the two conditions then there is between each condition and the 

neurotypical group. The ADHD group also showed reduced cortical thickness and higher 

degree in hubs regions compared to the autism group. Lastly, the ADHD group also showed 

reduced wiring costs compared to the autism group. Future research investigating these patterns 

in functional and structural connectivity and relating findings to behavioural or phenotypic data 

will hopefully shed light on the convergent and divergent neural substrates of autism and 

ADHD. Our findings do support the notion that both developmental conditions involve a shift 

in network topology that might be characterized as favouring local over global patterns. Lastly, 

they highlight the value of taking an integrated approach across conditions. 
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Chapter	3 Genetic	 origins	 of	 atypical	 brain	

organization	

3.1 Introduction	

In addition to behavioural, clinical differences, differences in cortical morphology between 

individuals with autism compared to typical controls have been reported (Ecker, 2016; Ecker, 

Ginestet, Feng, Johnston, Lombardo, Lai, Suckling, Palaniyappan, Daly, Murphy, Williams, 

Bullmore, Baron-Cohen, Brammer, Murphy, et al., 2013; Lai et al., 2014; Mensen et al., 2016). 

While heterogenous, recent studies have reported increased cortical volumes in the first years 

of life with autism compared to controls, with accelerated decline or arrest in growth in 

adolescents (Ecker, 2016; Mensen et al., 2016). Changes in cortical volume may be attributed 

to changes in cortical thickness (CT), changes in surface area, or both (Ecker, 2016).  

 

In support of this, studies have separately identified differences in both surface area (Hazlett et 

al., 2017) and cortical thickness (CT) (E. Smith et al., 2016) in children with autism.  Despite 

significant heterogeneity in cortical morphology, recent studies have indicated alterations in 

areas associated with higher cognition (e.g., language, social perception and self-referential 

processing) (E. Smith et al., 2016; Yang, Beam, Pelphrey, Abdullahi, & Jou, 2016). This has 

been supported by observed differences in cortical minicolumns in association areas in 

individuals with autism (McKavanagh, Buckley, & Chance, 2015).  
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It is unclear what contributes to these differences in cortical morphology in individuals with 

autism. Genetic factors play a major role in the development of brain networks and volumes in 

typically developing individuals (Elman et al., 2017; Hibar et al., 2015; Whitaker et al., 2016). 

For instance, twin heritability of cortical thickness measures suggest modest to high heritability 

for most regions of the brain (Eyler et al., 2012). In parallel, the contribution of genetic factors 

for autism has been estimated between 50-80% (Bourgeron, 2016; Gaugler et al., 2014; Tick, 

Bolton, Happé, Rutter, & Rijsdijk, 2016). Different classes of genetic variation have been 

associated with risk for autism. Several recent studies have identified a significant contribution 

of rare, de novo, putative loss-of-function mutations for autism (Kosmicki et al., 2016; Sanders 

et al., 2015; Stessman et al., 2017; Wang et al., 2013; Yuen et al., 2016). In addition, analyses 

of narrow-sense additive heritability has identified that common genetic variants, cumulatively, 

account for approximately half of the total variance in risk for autism (Gaugler et al., 2014).  

 

Recent studies have also identified genes dysregulated in the autism post-mortem cortex (Gupta 

et al., 2014; Parikshak, Swarup, Belgard, Irimia, Ramaswami, Gandal, Hartl, Leppa, Ubieta, et 

al., 2016; Voineagu et al., 2011). Studies have replicably shown that genes involved in synaptic 

transmission and related neuronal processes are downregulated in the autism postmortem 

cortex, and genes involved in astrocytes and microglial pathways are upregulated (Parikshak, 

Swarup, Belgard, Irimia, Ramaswami, Gandal, Hartl, Leppa, Ubieta, et al., 2016; Voineagu et 

al., 2011). These dysregulated genes may either represent causal mechanisms for risk or 

compensatory mechanisms as a result of upstream biological and cellular changes. Genes 

dysregulated in the autism postmortem cortex are also enriched in specific gene-coexpression 

modules identified using both adult (Gupta et al., 2014; Parikshak, Swarup, Belgard, Irimia, 



3.1	Introduction	 43	

	

	 Page	|	43	

Ramaswami, Gandal, Hartl, Leppa, Ubieta, et al., 2016; Voineagu et al., 2011) and fetal 

(Parikshak et al., 2013) cortical postmortem samples.  

 

Despite considerable progress in understanding neuroanatomical and genetic risk for autism, 

several questions remain. Mechanistically, it is likely that genetic risk variants alter 

neuroanatomical structural and functional properties, which ultimately contributes to the 

behavioural and clinical phenotypes. It is then pertinent to ask how genetic risk for autism 

contributes to differences in cortical morphology observed in individuals with autism. To our 

knowledge, no study has extensively investigated the association between autism risk genes 

and global changes in cortical morphology. Focusing on CT, we ask 3 specific questions: Q1) 

Which genes and biological pathways contribute to global differences in cortical thickness 

(ΔCT) in children with autism? Q2) What is the spatial expression profile of genes associated 

with ΔCT? and Q3) Are these genes enriched for three different classes of risk factors associated 

with autism: rare, de novo variants, common genetic variants, and/or dysregulated genes in the 

post-mortem cortex? We address these questions by combining analysis of ΔCT in autism as 

measured with MRI with gene expression postmortem data provided by the Allen Institute for 

Brain Science (AIBS; (Hawrylycz et al., 2012)). Similar, approaches have recently been used 

with the AIBS data in relation to schizophrenia (Romme et al., 2016) and myelination during 

development (Whitaker et al., 2016).  
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3.2 Methods	

3.2.1 Overview	

We first assessed differences in CT (ΔCT) across 308 cortical regions in individuals with autism 

by extracting cortical thickness estimates for 62 children with autism (cases) and 87 matched 

typically developing individuals (controls) from the ABIDE-I (Discovery dataset). Using 

median gene expression of 20,737 genes from 6 postmortem cortical brain samples (Hawrylycz 

et al., 2012), we conduct a Partial Least Squares regression (PLSR), a data reduction and 

regression technique, to identify significant genes and enriched pathways that contribute to 

ΔCT (Q1). We next quantify the expression of the same significant genes in terms of their 

spatial profile by comparing them across the different brain regions and Von Economo classes 

(Von Economo and Koskinas, 2008), which provides a way of assessing the hypothesis that 

there would be a global differentiation between higher order cognitive processing and more 

primary sensory processing (Q2). We test any significant genes for enrichment for 5 different 

sources of risk for autism (Q3):  

1. Genes dysregulated in the autism postmortem cortex. 

2. Adult cortical gene co-expression modules associated with dysregulated genes in the 

autism postmortem cortex. 

3. Fetal cortical gene co-expression modules associated with dysregulated genes in the 

autism postmortem cortex. 

4. Genes enriched for rare, de novo loss of function mutations in autism. 

5. Common genetic variants associated with autism.  

To	assess	the	replicability	of	 the	discovery	 findings	we	validated	the	results	using	two	

independent	 datasets	 from	 ABIDE-II:	 Validation	 1	with	 48	 cases	 and	 54	 controls	 and	

Validation	2	with	56	cases	and	154	controls.	In	parallel,	we	also	used	a	second	list	of	genes	
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dysregulated	in	autism	identified	using	a	partially-overlapping	cortical	gene	expression	

dataset	 autism	 and	 control	 post-mortem	 brain	 samples	 to	 validate	 the	 enrichment	

analysis	 within	 the	 original	 discovery	 dataset	 (validation	 autism	 gene	 expression	

dataset).	 To	 assess	 specificity	 of	 our	 results,	 we	 furthermore	 sought	 to	 answer	 these	

questions	in	a	matched	MRI	dataset	of	children	with	ADHD,	another	childhood	psychiatric	

condition.	A	schematic	overview	of	the	study	protocol	is	provided	in	Figure	3.1.		

	
Figure 3.1: Schematic overview of the methodology 
Mean cortical thickness was extracted for both the autism and the neurotypical groups across 308 cortical nodes (Panel A). A 

difference score in cortical thickness (ΔCT; autism - neurotypical) was calculated between these two groups (Panel B). In 

parallel the median AIBS gene expression profiles for 20,737 genes were calculated across the same 308 cortical nodes used 

in the imaging analysis (Panel C). Both these streams were included in a bootstrapped PLSR analysis that used the gene 

expression profiles as predictors and the ΔCT as response variable (Panel D). The PLSR assigns weights to each gene in terms 

of its contribution to the overall model in each component. Bootstrapped standard errors were derived and the gene weights 

were Z-transformed and corrected for multiple comparison using a Benjamini and Hochberg FDR correction (Panel E; i = gene 

index number, z = z-score for that gene’s association and q = FDR corrected z-score). Genes that were significant after FDR 

correction (z-score>1.96) were analysed in terms of their spatial expression as well as tested for enrichment against three classes 

of risk for autism: dysregulated autism genes in the postmortem cortex, genes harbouring rare de-novo variants, and common 

genetic variants in autism (Panel F). 
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3.2.2 Discovery	dataset	

3.2.2.1 Neuroimaging	

Imaging data used for discovery in this study are described in detail in the Supplementary Note 

and elsewhere (Bethlehem, Romero-Garcia, et al., 2017).  In short, structural T1 weighted 

MPRAGE images were obtained from the ABIDE I database 

(http://fcon_1000.projects.nitrc.org/indi/abide/, selecting participants in the age range from 9-

11, all males. All subjects were matched on age, and IQ between groups (see Table 1; Discovery 

Column). CT estimates were extracted using freesurfer and visually inspected for quality of 

segmentation by two independent researchers. Only when there was consensus on the quality 

were images included in the final sample. Next, images were parcellated into 308 cortical 

regions and mean CT for these regions was extracted. All groups were matched across scanner 

sites for mean CT. Scanning sites that had more than 10 individuals of only one group 

(Control/Autism) were excluded to avoid regressing out the group effect by regressing out site. 

In addition, scanner site was regressed out from CT estimates and the residuals were added to 

the group mean to allow for easier interpretation. The final discovery dataset consisted of 62 

children with autism (cases) and 87 matched neurotypical individuals (controls).  

3.2.2.2 Regional	gene	expression		

We used the transcriptomic dataset of the adult human brain created by the Allen Institute for 

Brain Science (http://human.brain-map.org) (Hawrylycz et al., 2012). The AIBS dataset 

includes six donors, three Caucasian, two African-American and one Hispanic. Their ages were 

57, 55, 49, 39, 31 and 24 years. Further details on microarray analysis are available from the 

Allen Institute (www.brain-map.org). As different cRNA hybridization probes were used to 

identify the expression level of the same gene, expression values from multiple probes were 
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averaged for each gene. Probes that were not matched to gene symbols in the AIBS data were 

excluded, resulting in 20,737 genes expression values that were evaluated in 3,702 brain 

samples. Due to the similarity of gene expression between hemispheres, the AIBS only sampled 

two of the four donors in the right hemisphere. In order to increase the number of AIBS samples 

per cortical region, all samples were pooled between hemispheres. 

 

The anatomical structure associated to each tissue sample was determined using the MRI data 

provided by the AIBS for each donor. T1-images of the six donors were processed following 

the Freesurfer pipeline. The high-resolution parcellation with 308 cortical regions, employed in 

the neuroimaging dataset, was warped from the anatomical space of the average subject 

provided by FreeSurfer (fsaverage) into the surface reconstruction of each AIBS donor brain. 

Surface-based parcellation of each donor brain was transformed into a volumetric parcellation 

that covered the whole cortical mantle. 73% of the total AIBS cortical samples were located 

within the resulting volumetric parcels. To improve on this, the parcellation scheme was 

expanded 2 mm into the WM, resulting in a final AIBS sample coverage of 91%. Gene 

expression values for each cortical parcel were computed as the median gene expression of all 

the samples falling within the parcel from all six donors. Expression values had very different 

scales across genes, for that reason the regional expression values of each gene were normalized 

by taking a z-score across regions. The final regional gene expression values were represented 

as a 308x20737 matrix that contained the whole-genome expression data for the 308 MRI 

regions of interest.  
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3.2.2.3 PLSR	analysis		

PLSR was used to determine the relation between gene-expression and ΔCT (CT autism – CT 

NT). Partial least squares regression or PLSR is a data reduction technique closely related to 

principal component analysis (PCA) and ordinary least squares (OLS) regression. PLSR 

projects both the independent and dependent variable into a new space and identifies 

components that explain the maximum covariance between the independent and dependent 

variables. Principle component regression on the other hand, extracts components or factors 

with a view of maximizing the covariance only between the independent variables. As a result 

of the difference in methods, the components extracted in PLSR are more likely to explain the 

variance in the dependant variable. There are a few advantages of PLSR over OLS regression 

or PCA. First, it allows correlated variables in its predictor matrix (Wold, Sjöström, & Eriksson, 

2001), with no assumption made about the distribution. Second, the precision of the PLSR 

model increases with an increasing number of relevant variables (Wold et al., 2001). Third, it 

can find a parsimonious model when the predictors are highly correlated, thus avoiding the 

problem of multicollinearity in OLS regression. Fourth, by projecting both the independent and 

dependent variable onto a new space, it extracts components in the independent variable that 

better explains the variance in the dependent variable, unlike PCA regression.  

 

We used the SIMPLS algorithm (de Jong, 1993) to conduct PLSR in Matlab with median gene 

expression of 20,737 genes across 308 cortical nodes as the independent variable and ΔCT 

across the same 308 cortical nodes as the dependent variable. We identified the number of 

optimal components for PLSR using cross-validation (plsdepot package in R: https://cran.r-

project.org/web/packages/plsdepot/index.html), and used the highest cumulative predictive 

error sum of squares to identify the number of components in the model with the best fit. To 
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assess significance of the contribution to the variance explained for each component we created 

a bootstrapped null-distribution for the variance of each of those components (10,000 

resamples). We focused our analyses only on components that explained a significant 

proportion of the variance, and explained at least 10% of the variance.  

 

Standard deviation for gene weights (or loadings) in each component were identified by 

bootstrapping (1000 bootstraps), and the weights for each gene were Z transformed after 

dividing them by the standard deviation. Significant genes in each component were identified 

after correcting for multiple testing using the Benjamini-Hochberg (Benjamini & Hochberg, 

1995) FDR method (FDR-adjusted p or q < 0.05). We used significant genes with both negative 

and positive weights in our analysis. As our dependent variable, ΔCT, had both positive and 

negative values, weights are not informative about directionality in the analysis. A detailed 

description of the PLSR regression and the rationale behind choosing the unsigned weights is 

provided in the Supplementary Material.  

	

3.2.2.4 Topographical	enrichment	analyses	

Topographical (or anatomical) expression patterns of the significant genes in each component 

over the different cortical classes defined in the Von Economo (VE) atlas (Von Economo & 

Koskinas, 2008) were conducted after creating a resampling based null distribution (10,000 

resamples). Z-scores for the differential expression across all 7 VE classes were computed and 

permuted to test their significant deviation from the null distribution. 
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3.2.2.5 Genetic	modules	and	enrichment	analyses	

We used Enrichr (http://amp.pharm.mssm.edu/Enrichr) (Chen et al., 2013; Kuleshov et al., 

2016) to investigate the enrichment of significant PLSR genes for each component against Gene 

Ontology Biological Processes. We also investigated the enrichment in different classes of 

autism risk genes using logistic regression: 

1. Transcriptionally dysregulated genes (n = 1143, 584 upregulated and 558 

downregulated in the autism cortex) were identified from Parikshak et al. (2016) (48 

autism donors and 49 neurotypical donors). We used genes that were transcriptionally 

dysregulated in the postmortem cortex with FDR adjusted P-values < 0.05. We also 

separated the genes into transcriptionally downregulated and transcriptionally 

upregulated and tested enrichment separately to see if either upregulated or 

downregulated genes drive the enrichment with the dysregulated genes.  

2. Adult gene co-expression modules: Transcriptionally dysregulated genes are likely to 

represent a number of different biological processes. To further understand what 

processes they contribute to, we can investigate specific gene co-expression modules 

associated with transcriptionally dysregulated genes. Gene co-expression modules are 

thought to represent clusters of genes that co-express, and are under common co-

regulatory mechanisms and which, ultimately contribute to common function. We 

investigated enrichment in six-postmortem cortical weighted gene co-expression 

modules that were significantly associated with the dysregulated genes: Modules M9, 

M19, and M20 (associated with transcriptionally upregulated genes in autism compared 

to control cortex) and modules M4, M10, and M16 (associated with transcriptionally 

downregulated genes in autism compared to cortex) (Parikshak et al., 2016). 

3. Fetal gene co-expression modules: As autism is a neurodevelopmental condition we 
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also investigated if significant PLSR genes for each component were enriched for 

specific developmental cortical weighted gene co-expression modules that are 

associated with either rare, de novo variants in autism (Mdev2 and Mdev3) or with 

transcriptionally dysregulated genes in the autism post-mortem cortex (Mdev13, 

Mdev16, and Mdev17) (Parikshak et al., 2013).  

4. Genes harbouring rare, de novo, putative loss of function variants (rare, de novo genes, 

n = 65) were identified from Sanders et al., (2015).  

5. Common genetic variants associated with autism were downloaded from the latest data 

freeze from the Psychiatric Genomics Consortium (5,305 cases and 5,305 

pseudocontrols). Gene based P-values and Z scores were obtained using MAGMA for 

each gene (de Leeuw et al., 2015).  

	

Enrichment analyses for the different classes of autism risk genes were done using logistic 

regression after accounting for gene length as a covariate. Enrichments are reported as 

significant if they had a Benjamini-Hochberg FDR adjusted P-value < 0.05 (Benjamini & 

Hochberg, 1995) and if they have an enrichment odds ratio (OR) > 1. The Supplementary 

Material provides further details about the gene sets and the methods used.  

 

3.2.3 Autism	structural	MRI	validation	dataset	

To validate our initial findings two additional MRI imaging datasets were obtained from the 

ABIDE-II: ABIDE-GU (Georgetown University), consisting of 51 children with autism and 55 

typically developing children (Validation 1) and ABIDE-KKI (Kennedy Krieger Institute) that 

included 56 children with autism and 155 neurotypical controls (Validation 2). After quality 

control, we excluded 3 cases and 1 typical control from ABIDE-GU and 2 controls for ABIDE-



52	 Genetic	origins	of	atypical	brain	organization	

	

	Page	|	52	

KKI, as they were outliers for global CT. This resulted in a final sample of 48 cases and 54 

controls for Validation 1 and 56 cases and 154 controls for Validation 2 (see Table 3.1; 

Validation columns). PLSR analyses were performed using the same methods in the discovery 

dataset (more details on this dataset are provided in a Supplementary Note). As only the first 

component significantly explained the variance (P < 0.00001, 10,000 bootstraps), we focused 

subsequent analysis on the first component. GO term enrichment, pathway, and gene 

enrichment analyses were performed as described for the discovery dataset. Gene enrichment 

analyses that were significant in the discovery dataset were validated against the validation MRI 

datasets using the following genes of interest: Transcriptionally downregulated genes from 

adult postmortem brain tissues (Parikshak, Swarup, Belgard, Irimia, Ramaswami, Gandal, 

Hartl, Leppa, Ubieta, et al., 2016); adult gene-coexpression modules associated with 

transcriptionally downregulated genes in autism (M4, M10, M16, and M20) (Parikshak, 

Swarup, Belgard, Irimia, Ramaswami, Gandal, Hartl, Leppa, Ubieta, et al., 2016);; and 

developmental cortex gene-coexpression modules associated with transcriptionally 

dysregulated genes (Mdev13 and Mdev17). We again corrected for all the tests conducted in 

each validation dataset using Benjamini-Hochberg FDR. In addition to validation using 

independent MRI data, we performed validation of the enrichment for downregulated genes 

using a partially overlapping gene-expression dataset (33 autism donors and 38 control donors; 

13 autism donors and 14 control donors overlap) (Gandal et al., 2016). We investigated if the 

significant PLSR genes identified in all three MRI datasets (Discovery, Validation 1, and 

Validation 2) were enriched for downregulated genes identified from the Validation autism 

gene expression dataset. Further details on this are provided in the Supplementary Material.  
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3.2.4 ADHD	structural	MRI	dataset		

To investigate the selectiveness for autism we also ran the PLSR analysis for ΔCT in  a matched 

group of children with and without ADHD, another childhood condition, selected from the 

ADHD-200 database (http://fcon_1000.projects.nitrc.org/indi/adhd200/). This is the same 

group as described elsewhere (Bethlehem, Romero-Garcia, et al., 2017) with the control groups 

being identical to the above described control group in the discovery dataset (see Table 3.1; 

Discovery Column and Validation 2 Column). Selection and all analysis on the ADHD dataset 

follow the same pipeline as the autism discovery dataset and are included in the Supplementary 

Material. The ADHD group was also matched to the discovery autism and neurotypical groups 

with regards to age, IQ and mean cortical thickness across scanner sites. Matching of the groups 

and regression of cortical thickness was done simultaneously with the above described 

discovery dataset to ensure a valid comparison between both groups could be made. 

Table	3.1:	Descriptive	statistics	for	all	three	datasets	

		 Discovery	 Validation	1	 Validation	2	 ADHD	

		 Autism	 Controls*	 Autism	 Controls	 Autism	 Controls	 ADHD	 Controls*	

n	 62	 87	 48	 54	 56	 154	 69	 87	

(0	F)	 (0	F)	 (8	F)	 (27	F)	 (15	F)	 	(56	F)	 (0	F)	 (0	F)	

Age	 10.07	 10.04	 10.98	 10.43	 10.32	 10.34	 9.99	 10.04	

(±1.11)	 (±1.13)	 (±1.53)	 (±1.71)	 (±1.51)	 (±1.20)	 (±1.17)	 (±1.13)	

FIQ	 108.86	 110.98	 118.68	 122.04	 103.42	 114.4	 107.95	 110.98	

(±16.94)	 (±10.39)	 (±15.01)	 (±13.27)	 (±15.99)	 (±10.55)	 (±14.18)	 (±10.39)	

The	Discovery	cohort	was	obtained	from	ABIDE-I.	The	validation	cohorts	were	obtained	from	the	ABIDE-II	

(Validation	 1:	 Georgetown	University,	 Validation	 2:	 Kennedy	 Kreiger	 Institute).	 The	 n-row	 denotes	 the	

number	of	subjects	with	the	number	of	females	(F)	provided	in	parenthesis,	FIQ	denotes	the	full-scale	IQ,	

with	standard	deviations	in	parenthesis	below.	*Indicates	that	the	same	controls	were	used	for	both	the	
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Autism	 Discovery	 and	 the	 ADHD	 datasets.	 Further	 details	 on	 the	 Discovery	 and	 ADHD	 datasets	 are	

described	elsewhere	(Bethlehem,	Romero-Garcia,	et	al.,	2017).		

3.3 Results	

3.3.1 Autism	discovery	MRI	dataset	

3.3.1.1 PLSR	analyses	and	characterization	

Cross-validation using an initial 35 component analyses identified that a 13-component model 

had the best fit (Supplementary Table C.1) Thus, PLSR was run using a 13-component model. 

Four components (Components 1, 3, 4 and 6) explained more than 10% of the variance in the 

total model (Supplementary Figure C.1). However, variance in ΔCT explained by PLS 

components was higher than expected by chance only for the first component (p = 0.009, 10,000 

permutations) but not for the remaining components (p = 0.303, p = 0.693 and p = 0.394, for 

components 3, 4 and 6, respectively). We first conducted pathway and ontology based 

enrichment analyses to characterize the first component. Supplementary Table C.2, shows the 

top ten pathways at the Kyoto Encyclopedia of Genes and Genomes (KEGG) for the first 

component. Only the GO term “Synaptic Transmission” in component 1 (PLSR1) survived 

FDR correction for multiple comparisons (q-value = 0.00006). PLSR1 was also significantly 

enriched for 11 pathways (Table C.2). As only PLSR1 had clear biological underpinnings and 

was significantly associated with CT variance, we thus focused on PLSR1 for subsequent 

enrichment analyses. There was a significant positive correlation between ΔCT and the scores 

of PLSR1 (r = 0.32; P = 4.15x10-9; Figure 3.3G) 
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3.3.1.2 Topographical	enrichment	analyses	

We next conducted spatial characterization of PLSR1 across all 5 VE classes (Von Economo 

& Koskinas, 2008) as well as an additional 2 subtype classes covering limbic regions and 

allocortex (class 6) and insular cortex (class 7) (Whitaker et al., 2016; Zilles & Amunts, 2012). 

As described above, we expected a potential differentiation between higher order cognitive 

processing and more primary sensory processing. The genes in PLSR1 are significantly over-

expressed in secondary sensory and association cortices (VE classes 2, 3 and 4: all Pcorrected < 

0.01) compared to a null distribution. In limbic and insular regions however these genes appear 

to be under-expressed (VE classes 6 and 7: all Pcorrected < 0.01). However, they also appear to 

be over-expressed in granular and primary motor cortices (VE Class 1). Figure 3.2 shows the 

results from the spatial characterization of the first component across all VE classes. Von 

Economo expression profiles in the two validation datasets largely resemble the pattern of over-

expression in association cortices observed in the discovery dataset (Supplementary Materials 

and Supplementary Figure C.5). The validation datasets additionally revealed a significant 

under-expression of the PLSR1 in primary sensory areas (classes 1 and 5; Pcorrected < 10-4). 

	

	
Figure 3.2: Expression and Von Economo classification for PLSR1 
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The heatmap in panel A shows the ΔCT distribution across all 308 cortical regions. The barplot in panel B shows 

the z-scores of the mean distribution across the different Von Economo Classes (Class 1: granular cortex, primary 

motor cortex. Class 2: association cortex. Class 3: association cortex. Class 4: dysgranular cortex, secondary 

sensory cortex. Class 5: agranular cortex, primary sensory cortex. Class 6: limbic regions, allocortex. Class 7: 

insular cortex.). All significant over- or under-expression classes are marked with an asterisk. To determine 

significance, we used permutation testing and an FDR corrected p-value < 0.025 to fully account for two-tailed 

testing. 

3.3.1.3 	Gene	enrichment	analyses	

We first investigated if the significant genes in the PLSR1 component were enriched for genes 

that are differentially expressed in the autism cortex. We identified a significant enrichment for 

genes that are dysregulated in the autism post-mortem cortex (OR = 1.21; Pcorrected < 2.81x10-

15). This was driven entirely by genes downregulated in autism cortex in comparison to control 

cortex (OR = 1.87; Pcorrected < 3.55x10-16). In comparison, there was no enrichment for 

upregulated genes (OR = 1.01; Pcorrected = 0.49). The downregulated genes have been previously 

reported to be enriched for several GO terms including synaptic transmission (Parikshak, 

Swarup, Belgard, Irimia, Ramaswami, Gandal, Hartl, Leppa, Ubieta, et al., 2016).  

 

Transcriptionally dysregulated genes can reflect several different underlying processes. To 

provide better resolution of the processes involved, we next investigated if this enrichment was 

associated with six adult co-expression modules associated with dysregulated autism genes. 

Three of these were associated with genes downregulated in the autism postmortem cortex (M4, 

M10, M19), and three were enriched for genes upregulated in the autism postmortem cortex 

(M9, M19, and M20) compared to controls. As we had identified a significant enrichment for 

downregulated autism genes but not for the upregulated autism genes, we hypothesized that 

gene co-expression modules associated with downregulated genes would also be enriched for 

association with PLSR1 genes. Indeed, PLSR1 was enriched for all three downregulated 
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modules (M4: OR = 1.07; Pcorrected < 3.55x10-16; M10: OR = 1.07; Pcorrected < 3.55x10-16; M16: 

OR = 1.07; Pcorrected < 3.55x10-16) but none of the 3 upregulated modules (M20) (M20: OR = 

0.96; Pcorrected < 7.655x10-5; M9: OR = 0.93; Pcorrected = 2.92x10-14; M19: OR = 0.93; Pcorrected < 

3.55x10-16).  

 

We next investigated if the significant genes in PLSR1 are also enriched in specific cortical 

developmental modules constructed from gene expression dataset of fetal or early postnatal 

brains. We focused our investigation on 5 modules with evidence of association with different 

classes of autism risk genes (Parikshak et al., 2013). The Mdev13, Mdev16, and the Mdev17 

modules are enriched for transcriptionally dysregulated genes in autism postmortem frontal and 

temporal cortices (Parikshak et al., 2013). The Mdev2 and the Mdev3 modules are enriched for 

rare variants identified in autism (Parikshak et al., 2013). We reasoned that our PLSR1 

component would be enriched for the three modules also enriched for transcriptionally 

dysregulated autism genes, but not for the two modules enriched for rare de novo variants 

associated with autism, in line with previous enrichment analyses. We identified significant 

enrichment for Mdev13 (OR = 1.04; Pcorrected < 3.55x10-16), Mdev 16 (OR = 1.05; Pcorrected < 

3.55x10-16) and Mdev17 (OR = 1.04; Pcorrected < 3.55x10-16). For the two modules associated 

with rare, de novo variants, we identified fewer PLSR1 genes than expected by chance (Mdev2: 

OR = 0.9659; Pcorrected = 1.70x10-11; Mdev3: OR = 0.961; Pcorrected < 3.55x10-16).  

	

We did not identify a significant enrichment for rare, de novo genes (OR = 0.96; Pcorrected = 

0.27). We also did not identify a significant enrichment for common variants using MAGMA 

to collapse SNP based P-values to gene based P-values (OR = 1.00; Pcorrected = 0.29). Results of 

the gene enrichment analysis are provided in Figure 3.3J and Supplementary Table C.6.  
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Figure 3.3: Dataset comparisons 

Panels A-C show the correlation between ∆CT in the three datasets. Panels D-F show the correlation between the 

PLSR scores of all three datasets. Panels G-I show the correlation between ∆CT and the PLSR scores in all three 

datasets (indicating that increased scores are strongly correlated with increased ∆CT). Panel J shows the odds 

ratios for the gene-enrichment analysis in the discovery dataset. All significantly enriched modules were replicated 

in the validation datasets (panels K and L) apart from module 4 of the adult co-expression modules. Pearson 

correlation coefficient and P-values of the correlations are provided in the top of the respective panels.  
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3.3.2 Autism	validation	MRI	dataset	

3.3.2.1 PLSR	analyses	and	characterization	

We conducted validation of all the significant enrichment analyses using ΔCT from two 

independent cohorts (Validation 1 and Validation 2). Both the validation samples include males 

and females, though of a similar age range, whereas, the discovery dataset included only males. 

We first investigated the correlations in ΔCT between the three datasets. There was a non-

significant correlation between the discovery and the two validation datasets (Figure 3.3A and 

3.3B). This can be explained by a number of factors such as the inclusion of females in the 

second dataset (though the supplementary materials includes an analysis to rule this factor out), 

heterogeneity due to scanner sites in the discovery dataset, age of onset of puberty, and clinical 

conditions. However, there was a significant positive correlation in ΔCT between the two 

validation datasets (r = 0.476; P < 2.2x10-16).  

 

Variance in ΔCT explained by PLS components was again significant only for the first 

component (PLSR1-validation) (P < 10-14, 10,000 permutations) for both validation datasets 

(Supplementary Figure C.2). Subsequent analysis focused only on this component (PLSR1). 

The first component explained 14% of the total variance in Validation 1 and 42% of the total 

variance in Validation 2. There was also a significant positive correlation between ΔCT and the 

gene expression scores in both validation datasets (Figures 3.3H and 3.3I) as was the case in 

the discovery dataset (Figure 3.3.G). Further, PLSR1 was also enriched for the GO term 

‘Synaptic transmission’ (Pcorrected = 0.0001 for both Validation 1 and Validation 2). In addition, 

for Validation 2, the PSLR component was also enriched for the GO term ‘Membrane 

depolarization’ (Pcorrected = 0.0007). Enrichment in KEGG pathways for both the validation 

datasets are provided in Supplementary Tables C.3 and C.4. 
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Despite the lack of correlation between ΔCT in the Discovery and the two validation datasets, 

there was significant correlation in the gene scores (Figures 3.3D to 3.3F and Figure 3.4 A to 

C) and gene loadings (Supplementary Figure C.3). Despite the different correlations in ΔCT 

between the datasets, PLSR identifies highly correlated gene expression scores, with similar 

gene weights, suggesting that a highly similar set of genes contribute to ΔCT in autism in the 

three different datasets. This was further supported by a high degree of rank-rank overlap in the 

Z scores of the PLSR1 components of the three datasets (Supplementary Figure C.7 and 

Supplementary Materials). We note that the while the discovery dataset comprises only male 

participants, both Validation 1 and Validation 2 comprises male and female participants. We 

investigated if the removal of female participants increased the correlation in ΔCT, gene 

loadings, and gene scores (Supplementary Materials). We did not find any evidence of 

improved correlations after removing the female participants (Supplementary Figure C.4). Thus 

it seems unlikely that biological sex is the main contributor to this noise. As the datasets mainly 

differ on multi-site versus single-site it seemd plausible that some of the noise might be 

explained by the fact that different scanners were involved to cllect the datat from the discovery 

data. 

3.3.2.2 Topographical	enrichment	analyses	of	PLS	scores	

 We also explored the topographical pattern of the PLSR scores. The areas that show 

particularly high scores are extremely robust across datasets (as would be expected from the 

highly significant correlations). This was particularly evident in areas around the temporo-

parietal junction (both left and right), left and right temporal lobe and some smaller effects 

around frontal and anterior cingulate regions. Although this analysis should be considered 
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exploratory it is interesting to note that they are all regions that are specifically implicated in 

autism (Lombardo et al., 2011; Lombardo & Baron-Cohen, 2011). 

	
Figure 3.4: PLS Scores for all autism datasets 

	

	

3.3.2.3 Gene	enrichment	analyses	

We next sought to replicate the significant genetic enrichments observed in the analyses using 

the discovery dataset. We identified a significant enrichment of transcriptionally downregulated 

genes in the autism post mortem cortex (Validation 1: OR = 1.24; Pcorrected = 0.004; Validation 

2: OR = 1.3; Pcorrected = 0.001), providing confidence in the robustness of our initial results 

(Figure 3.3K and L).  

 

Mirroring the enrichment with the downregulated genes in the autism post-mortem cortex, we 

also identified enrichment for the three adult gene co-expression modules that are enriched for 

downregulated genes in Validation 1 (M4, M10, and M16) and two of the three (M10 and M16) 

adult gene co-expression modules for Validation 2 (Figure 3.3K and L, Supplementary Table 

C.6). We were able to also replicate the enrichment for the three fetal gene co-expression 
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modules (Mdev13, Mdev16, and Mdev17) for both the validation datasets (Figures 3.3K and 

3.3L, Supplementary Table C.6). 

	

3.3.3 Secondary	validation	analyses	

Our primary validation used an independent MRI dataset. However, we also sought to validate 

our results using a partially overlapping post-mortem gene-expression dataset from individuals 

with autism and controls (Gandal et al., 2016). Some cortical tissue samples overlap with 

discovery post-mortem gene expression dataset from Parikshak et al., 2016, details of which 

are provided in the Supplementary Materials. This provides a second list of genes 

downregulated in the autism post-mortem cortex. We focused only on the genes downregulated 

in the autism post-mortem cortex as this was driving the enrichment identified in the discovery 

and validation MRI datasets. Using significant PLSR1 genes from the discovery MRI dataset 

we identified a significant enrichment for the new list of downregulated genes (OR = 1.39, 

Pcorrected = 1.86x10-7). We identified a similar enrichment using significant PLSR1 genes from 

both the validation datasets (Validation 1: OR = 1.35; Pcorrected = 0.005; Validation 2: OR = 

1.30; Pcorrected = 0.019). This validation using a partially overlapping gene expression dataset 

provides further robustness to the results.   

	

3.3.4 Comparison	with	ADHD	

We also wanted to investigate if the enrichment was specific to autism or whether there was a 

similar mechanism in other neuropsychiatric conditions. To make the analysis comparable to 

the autism analysis, we focused on ADHD, another developmental neuropsychiatric condition 

affecting children. There are significant phenotypic and genetic correlations between the two 
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conditions, and we had access to matched MRI data from children with ADHD. PLSR analysis 

of ΔCT in ADHD data did not identify any components that significantly explained the variance 

in ΔCT (Supplementary Table C.5).  Thus, we did not consider the ADHD dataset for further 

analyses. Details of the number of components, the model fit, and the variance explained are 

provided in the Supplementary Material.  

3.4 Discussion	

 We report the association of transcriptionally downregulated genes in the autism 

postmortem cortex with global differences in cortical thickness in 166 children with autism and 

295 neurotypical children. Using partial least squares regression on a discovery dataset of 62 

cases and 87 controls, we identify one component (PLSR1) that explains a significant 

proportion of variance in ΔCT and is enriched for the GO term ‘Synaptic Transmission’. This 

component was enriched for genes downregulated in the autism post-mortem cortex, which we 

validated using two independent structural MRI datasets and a quasi-independent autism post-

mortem gene expression dataset. However, we did not find an enrichment for either common 

variants or rare, de novo variants associated with autism in the current study. We also identify 

that the PLSR1 genes are enriched for fetal and adult developmental cortical modules that have 

been previously reported to be enriched for transcriptionally dysregulated genes in the 

postmortem autism cortex and for genes involved in synaptic transmission (Parikshak et al., 

2013; Parikshak, Swarup, Belgard, Irimia, Ramaswami, Gandal, Hartl, Leppa, Ubieta, et al., 

2016). In contrast we did not find an enrichment for developmental cortical modules enriched 

for rare variants associated with autism, underscoring the role of transcriptionally dysregulated 

genes but not rare de novo variants associated with autism. We were unable to identify genes 

that contribute to ΔCT in ADHD, another childhood condition. Our study provides robust 
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evidence linking large-scale differences in CT to synaptic genes and dysregulated genes in the 

autism postmortem cortex.  

 

The validation using two independent autism MRI datasets, this time comprising MRI data 

from both male and female children with and without autism suggests a few things. First, the 

results are valid even using MRI data from different cohorts. The results were also valid despite 

non-significant correlations in global ΔCT between the discovery and the two validation 

datasets. Second, our results suggest that the same sets of genes contribute to ΔCT regardless 

of sex. Studies have identified differences in cortical morphology between neurotypical males 

and females and between males and females with autism (Lai, Lombardo, Suckling, et al., 2013; 

Sowell et al., 2007). We furthermore identified a high correlation between a males-only dataset 

and two males and females combined MRI datasets for the gene weights and gene scores in the 

first PLS component.  

 

Previous studies have identified a role for the genes involved in synaptic transmission and 

neuronal signaling in brain networks (Whitaker et al., 2016). Changes in CT may be due to a 

host of factors such as changes in myelination, synaptic pruning, and dendritic arborization 

(Dube et al., 2015; Fjell et al., 2015). The enrichment of genes involved in synaptic transmission 

with genes that contribute to differences in cortical thickness may, thus, reflect these underlying 

processes. Evidence from rare genetic variants (Bourgeron, 2009, 2015) and transcriptionally 

dysregulated genes in autism have highlighted a role for synaptic transmission in the aetiology 

of autism (Parikshak, Swarup, Belgard, Irimia, Ramaswami, Gandal, Hartl, Leppa, Ubieta, et 

al., 2016; Voineagu et al., 2011). We find an enrichment for transcriptionally dysregulated 

genes in CT differences in autism, but have not identified an enrichment for rare, de novo loss 
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of function genes or common variants implicated in autism. The lack of enrichment with rare, 

de novo loss of function genes may be due to both the relative low frequencies of such variants 

and small proportion of variance in liability explained by rare de novo variants (Gaugler et al., 

2014). In contrast, the lack of enrichment with common variants may be explained by the lack 

of statistical power of even the largest available autism GWAS dataset.  

 

The current study does not directly describe a mechanism that links dysregulation in synaptic 

genes and cortical thickness differences. However, animal studies have shown that several 

candidate genes for autism risk are regulated by synaptic activity, leading to the hypothesis that 

dysregulation in synaptic homeostasis is a major risk for autism (Bourgeron, 2015). The effects 

of this can contribute to both processing of cognitive and non-cognitive input, and to more 

morphological changes in neuroanatomy via processes such as activity dependent synaptic 

pruning and dendritic arborization. Post-mortem studies on the brains of children and 

adolescents with autism have indicated a lack of synaptic pruning (Tang et al., 2014). 

Investigating the specific role of synaptic genes in altering neural circuitry and cortical 

morphology will help elucidate the precise molecular mechanisms underlying cortical thickness 

differences seen in autism.  

 

There are, however, some caveats that need to be taken into consideration while interpreting 

these results. While we have used the largest sample of MRI data in children with autism 

available to us, the sample size is still not ideal to capture the high heterogeneity in the 

condition. We deliberately focused on a narrow age range to reduce age-related variability at 

the cost of increasing the number of samples. Second, gene expression data was derived from 

only six postmortem adult brain samples (which is the largest and most detailed currently 
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available). Gene expression is known to vary with age (Glass et al., 2013; Somel et al., 2010). 

Unfortunately, we are restricted in using the adult gene expression data from the AIBS for 

several reasons. First, this is the most spatially detailed dataset of gene expression. Second, the 

availability of MNI coordinates in the adult gene expression datasets allows for mapping of 

gene expression in distinct brain regions to cortical thickness differences extracted from MRI 

scans. Third, gene expression changes with age are limited and restricted to specific brain 

regions. A recent study identified only 9 genes significantly altered globally across the 10 

regions investigated in post-mortem tissue samples (Soreq et al., 2017), largely driven by glial 

genes. Cell specific enrichment in our dataset implicated neuronal genes only. Fourth, as autism 

is a developmental condition, investigating differences in cortical morphology at an early age 

is important to limit the role of environmental factors that contribute to differences in cortical 

morphology later in life (Lange et al., 2015; B. a. Zielinski et al., 2014). Fifth, enrichment for 

gene expression modules associated with autism risk in the developing cortex provides further 

confidence that the genes identified here are relevant across the age-spectrum. We do 

acknowledge that investigating a paediatric specific gene-expression dataset will help further 

refine the analyses, once this data becomes available.    

Third, we focused on a specific age-range for the current study. Longitudinal changes 

in autistic individuals have been observed (Hazlett et al., 2017; Lange et al., 2015), and different 

genes and pathways may contribute to cortical morphology at different ages. Further, the age 

of onset of puberty varies between individuals and we note that, particularly for the older 

children in our datasets, puberty may influence morphology (Koolschijn et al., 2014). Finally, 

transcriptional dysregulation may reflect both a causative risk mechanism for autism, or a 

compensatory consequence of genetic, hormonal, and environmental risk for autism. We were 
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unable to disentangle if transcriptionally dysregulated genes causally contribute to cortical 

morphology changes, or if they are both downstream of a common risk mechanism, or both. 

 

To our knowledge, this is the first study linking different genetic risk mechanisms in autism 

with changes in cortical morphology. In sum, we have shown that genes that are enriched for 

synaptic transmission and downregulated in individuals with autism are significantly associated 

with global changes in cortical thickness. We also show that these genes are generally 

overexpressed in association cortices. We were able to validate the results in an independent 

MRI dataset and quasi-independent gene expression dataset but not in a matched MRI dataset 

that included individuals with ADHD, showing both replicability as well as selectivity. 
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Chapter 4 Altered structural brain organization in 

adults with autism 

4.1 Introduction	

Neuroscientific, psychological, genetic and biological research into mental health is marked by 

a search for commonalities in the underlying neurobiology. In some conditions however, this 

is easier said than done. Autism is one such condition that is difficult to capture in a concise 

way while doing justice to the breadth of the spectrum. It is for example not uncommon to 

speak of the ‘autisms’ rather than of autism as a single type of condition. DSM-V defines autism 

as a developmental disorder marked by qualitative impairments in social interaction and 

communication combined with repetitive and stereotyped behaviour (American Psychiatric 

Association, 2013). This categorical definition however might not fully capture the wide 

phenotypic variety seen in the autistic spectrum. Indeed, DSM 5 now defines conditions on a 

spectrum or scale rather than as a category. The heterogeneity of the condition is strongly 

reflected in the diversity and variability of research findings. Some have even characterized the 

field as “a fragmented tapestry stitched from differing analytical threads and theoretical 

patterns” (Belmonte et al., 2004). Nonetheless there have been some promising results in the 

search for an underlying framework that can characterize the specificity of autism while still 

applying to the whole spectrum. One particularly promising and interesting approach has been 

that of brain connectivity or network analyses. 
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4.1.1 Cognitive	processing	styles	in	autism		

There are several theories describing specific aspects of the autism spectrum and its traits and 

behaviours. Some prominent theories include that of hyper-systemizing (Baron-Cohen, 

Ashwin, Ashwin, Tavassoli, & Chakrabarti, 2009; Baron-Cohen, Hoekstra, Knickmeyer, & 

Wheelwright, 2006) and enhanced perception (Ashwin, Ashwin, Rhydderch, Howells, & 

Baron-cohen, 2009; Plaisted Grant, Davis, Grant, & Davis, 2009). The theory of hyper- 

systemizing, for example, proposes that people with autism have a strong drive to search for 

repeating patterns or rules to understand a system. Enhanced perception theory argues that 

sensory experience is heightened allowing the development of specific talents seen in autistic 

individuals (Ashwin et al., 2009; Plaisted Grant et al., 2009). Hyper-systemizing and enhanced 

perception are not incompatible and might in fact complement one another. What separates 

these two theories from most others is that they focus on the possible over-development of a 

specific trait, perhaps giving rise to talent. In contrast, other prominent theories have focused 

more on deficits in cognitive processing. Examples include deficits in executive functioning 

(Ozonoff, Pennington, & Rogers, 1991) complex information processing (Minshew, Goldstein, 

& Siegel, 1997) and empathy (Baron-cohen, Richler, Bisarya, Gurunathan, & Wheelwright, 

2003; Baron-Cohen & Wheelwright, 2004). Since their postulation, several studies have 

provided support for differences in cognitive processing (Happé, 1999; Happé & Frith, 2006).  

	

Two prominent theories have sought a more integrated approach to unifying some of the 

heterogeneity in autism by taking a broader perspective. The Weak-Central Coherence (Happé 

& Frith, 2006) (WCC) theory of autism proposes that people with autism have a cognitive style 

that involves a preference for processing local details over the global picture. In people 

diagnosed with autism this theory has often been used to explain a dichotomy between 
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difficulties in social interaction combined with an excellent eye for detail. Social interaction 

requires people to take into account the overall context, being relatively flexible, not rigidly 

systemizing and not only focusing on specific sensory details.  

 

A second theory that takes a broader perspective is the extreme male brain theory (EMB) 

(Baron-Cohen, 2002). Stemming from the fact that autism is much more common in males 

(with estimated ratios ranging from 1 in 4 to 1 in 2). Baron-Cohen proposed that autism or 

autistic traits show a pattern of extreme masculinization, where any typical sex difference is 

exaggerated in autism. For example, if males on average perform worse than females on tasks 

intended to measure theory of mind capacity, then EMB predicts that men with autism would 

score lower than neurotypical men. In addition, the EMB theory also suggests involvement of 

prenatal sex steroid pathways, since hormones are one of the most important drivers of 

neurobiological sex differences. This notion found support in a large scale epidemiological 

study of prenatal steroids such as testosterone being elevated in children later diagnosed with 

autism (Baron-Cohen et al., 2015). It is well-known that there are sex differences in 

neuroanatomy of neurotypical individuals (Ruigrok et al., 2014). Sadly, most research and 

diagnostic tools in autism research are largely focused on males, despite increasing evidence of 

biological sex modulating its aetiology (Frazier, Georgiades, Bishop, & Hardan, 2014; Lai, 

Lombardo, Suckling, et al., 2013; Lai, Lombardo, Auyeung, Chakrabarti, & Baron-cohen, 

2015). Interestingly, there have been reports of substantial neuroanatomical sex differences in 

the neurotypical and autism groups that are relevant to the EMB theory (Lai, Lombardo, 

Suckling, et al., 2013). Specifically, females with autism show a neuroanatomical pattern of 

masculinization that is not apparent in males with autim (Lai, Lombardo, Suckling, et al., 2013).  
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Perhaps closely related to EMB theory and particularly relevant to this sex difference in ASC 

has been the postulation of potential gender incoherence (GI) effects  (Bejerot et al., 2012). 

Bejerot and colleagues noted that individuals with autism often show androgynous facial 

features. They showed that to some degree women with autism showed masculinization 

whereas men on the spectrum showed a tendency towards feminization. The notion that women 

with autism would show masculinization is not in direct conflict with the notion that autism is 

an extreme form of the male brain, but they differ perhaps mostly in their extent EMB would 

predict; female controls < male controls < autism (or in the opposite direction). Whereas GI 

would predict; male autism = female controls < male controls = female autism (or female 

controls < male autism < female autism < male controls).  

 

4.1.2 Hypothesis	and	chapter	outline	

To assess network differences in autism and across biological sex we utilized graph theory 

(Bullmore & Sporns, 2009; Mark Newman, 2010; Stam & Reijneveld, 2007). Graph theory 

allows us to study different modalities of network data within the same mathematical 

framework. Graph theory has been proven to be an extremely useful mathematical framework 

to quantify network properties of complex biological systems, especially the brain (Bullmore 

& Sporns, 2009). Appendix A gives a detailed overview some of the background and 

mathematical methods that have been adopted from graph theory to study human brain neural 

networks. Details of the metrics can also be found elsewhere (Mark Newman, 2010; Stam & 

Reijneveld, 2007). In the present study we focused on global network properties of 

characteristic path length, normalized clustering coefficients (e.g. transitivity), assortativity (as 

a measure of the ability of a network to rapidly propagate information) and efficiency (e.g. the 
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ratio between strength and number of connections needed to connect the entire network). We 

also explored local or nodal measures of degree (the number of connections of each node), 

clustering (the level to which nodes are part of local clusters), betweenness centrality (to 

evaluate the importance of a networks node in the transfer of information) and local efficiency 

(how ‘efficiently’ information from one node can propagate throughout the network).  

 

The WCC may provide an intuitive framework in relation to studying network organization. 

One can for example hypothesize that difficulties with information integration or lack of central 

coherence might be related to an overall disrupted brain network that impedes these two 

phenotypic factors. The theory however does not provide a clearly testable hypothesis as any 

group difference in any direction can be interpreted as atypical and thus evidence for weak 

central coherence. It also does not speculate on potential sex differences within and between 

the spectrum. However, the EMB theory also provides an intuitive, but more clearly testable 

hypothesis to assess potential network abnormalities in autism and across biological sex, 

namely that network metrics from the autism group would be an extreme of the typical male 

pattern of sex differences. This would predict a linear rank order of:  

 

Female Control - Male Control - Autism 

 

Thus, in order to test this theory we stratified the analyses over two groups as was done 

previously in a similar study of sex modulated effects in autism (Lai, Lombardo, Suckling, et 

al., 2013). In analysis Group 1 we entered both neurotypical groups and the female autism 

group. In analysis Group 2 we entered both neurotypical groups and the male autism group. 

Interestingly, this approach also allows me to test for potential gender incoherence effects by 
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looking at regions where the autism group does not differ from the opposites sex neurotypical 

group even when there is a neurotypical sex difference. This stratification allowed us to test for 

potential gender incoherence as post-hoc testing would reveal whether the female autism group 

would more closely resemble the male control group and/or whether the male autism group 

would more closely resemble the female control group. 

4.2 Methods	

4.2.1 Participants	

A total of 133 adult participants were recruited as part of the Medical Research Council Autism 

Imaging Multicentre Study (MRC-AIMS). Diagnosis of Autism was confirmed for 30 male 

autistic participants using the Autism Diagnostic Interview-Revised (ADI-R) (Lord, Rutter, & 

Le Couteur, 1994). An additional three participants who scored 1 point below threshold on the 

repetitive behaviour domain of the ADI-R were also included because they met Autism 

Diagnostic Observation Schedule (ADOS) (Lord et al., 2000)  criteria for autism spectrum and 

were diagnosed by experienced clinicians. Autism diagnosis was also confirmed for 30 female 

autistic participants using the ADI-R (Lord et al., 1994). Another three females, though not 

having ADI-R data available (because their childhood caregivers were not able to be 

interviewed), were also included for the reasons that one scored above the cut-off for ‘autism 

spectrum’ on the Autism Diagnostic Observation Schedule (ADOS), one previously received a 

diagnosis using the Adult Asperger Assessment (AAA) (Baron-Cohen, Wheelwright, 

Robinson, & Woodbury-Smith, 2005) which had incorporated care-giver reports on childhood 

behaviours, and one had been diagnosed by an expert clinician (Professor Digby Tantam, 

University of Sheffield) with assessments including comprehensive childhood developmental 
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history. Neurotypical (NT) volunteers (33 male, 34 female) were recruited through local 

advertisements and satisfied the same inclusion criteria as the autism groups, except that they 

did not have autism themselves or in their family history. Exclusion criteria for both groups 

included current or historical psychotic disorders, substance-use disorders, medical disorders 

associated with autism (e.g., tuberous sclerosis, fragile X syndrome), intellectual disability, 

epilepsy, hyperkinetic disorder, Tourette’s syndrome, and current use of antipsychotic 

medication. Data from 3 male autistic participants was excluded (two due to incomplete brain 

coverage during scanning and one due to neuro-radiological diagnosis of agenesis of corpus 

callosum), leaving 30 male autistic participants for subsequent analysis. For the female autism 

cohort, data from three women was excluded (two with incomplete brain coverage and one with 

marked motion artefact), leaving 30 available for subsequent analysis. Informed written consent 

was obtained for all participants in accord with procedures approved by the Suffolk Research 

Ethics Committee.  

4.2.2 Motion	assessment	

It was recently shown that head motion in the scanner may significantly confound functional 

connectivity measurements in functional MRI (Power, Barnes, Snyder, Schlaggar, & Petersen, 

2012; Van Dijk, Sabuncu, & Buckner, 2012). Although this is not an issue for structural 

covariance analysis, we intend to use the same groups for functional connectivity analysis at a 

later stage and matched all groups based on in-scanner head motion of their functional imaging 

session.  

 

Small jerky head movements can produce changes in the BOLD time-series that subsequently 

lead to systematic changes in the correlation structure when estimating functional connectivity 
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(Power et al., 2012; Van Dijk et al., 2012). Power et al. (2012) show that this may trigger a shift 

in long and short range functional coupling, effectively increasing overall (anatomically) short-

range correlations and decreasing long-range correlations. Both studies (Power et al., 2012; 

Van Dijk et al., 2012) show how this effect persists despite spatial registration and co-varying 

or regressing out motion altogether. They furthermore suggest that specific groups of 

individuals might show larger in-scanner motion. Specifically Power et al. (2012) show that 

this effect is strongest in children, intermediate in adolescents and weakest in adults. It is very 

well possible that people with autism might show more in-scanner head motion. Motion 

analysis of our original sample indeed indicated possible group differences in in-scanner 

motion. Therefore we chose to match our groups based on motion as well as on age and IQ, for 

both the structural covariance as well as the functional connectivity analysis.  

 

Three measures were calculated based on the reallignment parameters obtained during pre-

processing using scripts described in Wilke (Wilke, 2012) as part of a motion fingerprint 

analysis (http://www.medizin.uni-tuebingen.de/kinder/en/research/neuroimaging/software/): 

average scan-to-scan displacement, number of scan-to-scan displacements larger then 1mm in 

Euclidean distance (i.e., ‘jerky’ movement), and maximum scan-to-scan displacement (Power 

et al., 2012; Wilke, 2012). Participants showing more than 10 jerky movements (more than 

1.6% in the total number of time points) larger than 1mm in Euclidean distance, as well as the 

extreme outliers on the other two measures, were excluded from subsequent analyses (4 

participants in the male autistic group, 1 participant in the female neurotypical group). This 

removal of motion outliers resulted in the four groups pair-wise matched on all three motion 

descriptors, as well as ensuring subject images most liable to motion confounding effects were 
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removed from subsequent analyses.  The final cohort, group-wise matched for motion, age and 

full-scale IQ, consisted of 117 participants (Table 4.1). 

 Table	4.1:	Descriptive	statistics 
	 MC	(N=33)	 MA	(N=25)	 FC	(N=29)	 FA	(N=30)	 Statistics	
	 Mean	(SD)	

[1st	–	3th	quartile]	
Mean	(SD)	

[1st	–	3th	quartile]	
Mean	(SD)	

[1st	–	3th	quartile]	
Mean	(SD)	

[1st	–	3th	quartile]	
	

Age	(Years)	 28.4	(6.1)	 27.8	(7.4)	 27.6	(6.5)	 28.0	(8.3)	 ns	
Verbal	IQ	 110.8	(12.0)	 114.4	(12.7)	 118.1	(9.6)	 113.5	(12.3)	 FC>MC		

(p	=	.010)		
Performance	IQ		 118.5	(11.4)	 113.8	(15.3)	 116.0	(8.9)	 109.9	(18.0)	 MC>FA		

(p	=	.030)	*	
Full-scale	IQ		 116.3	(11.6)	 115.8	(13.8)	 119.5	(7.7)	 113.3	(16.6)	 ns	
Motion	 	 	 	 	 	

Average	scan-to-
scan	displacement	

0.10	
[0.08	–	0.13]	

0.11	
[0.09	–	0.16]	

0.90	
[0.08	–	0.11]	

0.10	
[0.09	–	0.12]	

ns**	

Displacements	
larger	than	1mm	

Euclidean	distance	

0	
[0	–	0]	

0	
[0	–	1]	

0	
[0	-	0]	

0	
[0	-	1]	

ns**	

Maximum	scan-to-
scan	displacement	

0.38	
[0.34	–	0.65]	

0.60	
[0.31	–	1.11]	

0.56	
[0.28	–	0.74]	

0.53	
[0.37	–	1.07]	

ns**	

AQ	 15.2	(6.9)	 32.8	(8.2)	 11.9	(4.7)	 37.9	(6.8)	 ***	
ADI-R	 	 	 	 	 	

Social	 -	 16.0	
[13.0	-21.5]	

-	 17.0	
[12.0	–	21.0]	

ns****	

Communication	 -	 15.0	
[12.0	–	17.5]	

-	 13.0	
[10.0	–	17.0]	

ns****	

RSB	 -	 5.0	
[3.0	–	7.5]	

-	 5.0	
[3.0	–	5.0]	

ns****	

ADOS	 	 	 	 	 	
	S	+	C	 –	 7.0	

[4.0	–	12.0]	
–	 3.5	

[1.75	–	6.25]	
MA>FA		

(p	=	.013)	****		
RSB	 –	 1	

[0	–	2]	
–	 0	

[0	–	0]	
MA>FA		

(p	<	.001)	****	
	

	
*: Independent Samples T-Test, Levene’s Test for Equality of Variances showed significant non-equal variances, 

therefore equal variance was not assumed in the statistical tests. 

**: No main effect on Kruskal Wallis Test & no significant difference in post-hoc Mann-Whitney Tests between 

pairs of groups. 

***: Significant main effects for diagnosis and gender as well as interaction. Post-Hoc uncorrected: MC<MA (p 

< .001), FC<FA (p < .001), MA<FA (p = .052), MC>FC (p = .007), MA>FC (p < .001) & FA>MC (p < .001). 

****: Mann-Whitney U Test 

 

MC = (neuro) typical control group male adults; MA = male adults with autism; FC = (neuro) typical control 

group female adults; FA = female adults with autism; SD = standard deviation; ns = non-significant (p > 0.05); 

AQ = Autism Spectrum Quotient; ADI-R = Autism Diagnostic Interview-Revised; RSB: repetitive, restrictive 

and stereotyped behaviour; ADOS: Autism Diagnostic Observation Schedule; S + C: ADOS “social interaction + 

communication” total scores. 
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4.2.3 Image	processing	

Freesurfer (http://surfer.nmr.mgh.harvard.edu/) was used to segment individual T1-weighted 

fast spoiled gradient echo (FSPGR) structural images and obtain information on individual 

cortical thickness maps. All Freesurfer obtained estimations of white-grey matter boundaries 

were visually inspected for accuracy. To create a consistent parcellation template for both the 

structural covariance matrix as well as the functional resting-state data a method developed by 

Romero-Garcia and colleagues (Romero-garcia et al., 2012) was used. This method uses a 

backtracking algorithm to subparcellate the standard Desikan-Killiany atlas (Desikan et al., 

2006) into 308 cortical and 41 sub-cortical regions. The standard Desikan-Killiany atlas 

subdivides the cortex into 66 standard gyral-based cortical regions. There are however two good 

reasons for subparcellating the data beyond that. First, the sub-parcellation provides a better 

resolution and it seems reasonable to assume that some anatomically defined brain regions have 

relevant functional subdivisions. Functional neuroimaging studies will seldom show activation 

effects for an entire anatomically bound region. Ideally these meaningful sub-divisions are 

known, but as this is unfortunately not the case the second best approach might be to randomly 

sub-parcellate while keeping anatomical boundaries in place.  A second, and perhaps more 

important, reason for sub-parcellating, is that it allows for networks to be constructed from 

similar sized nodes. When only anatomically defined regions are used some regions will be 

much larger (e.g. contains many more voxels). This might result in a somewhat unbalanced 

graph as the contribution of each node to the overall graph metrics is not weighted by a nodes 

anatomical size. Sub-parcellating into similar sized regions makes that a redundant issue and 

ensures balanced networks while retaining potentially meaningful a-priori anatomical 

information.  
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The backtracking algorithm used, grows subparcels by placing seeds at random peripheral 

locations of the standard atlas regions and joining them up until a standard pre-determined 

subparcel size is reached. It does this reiteratively (i.e. it restarts at new random positions if it 

fails to cover an entire atlas region) until the entire atlas region is covered. Individual 

parcellation templates were created by warping this standard template containing 349 regions 

to each individuals’ subject space FSPGR image. Warping of the segmentation map to the 

individuals subject space has the advantage of avoiding possible distortions from warping 

images to a standard space that is normally needed for group comparisons. Lastly, average 

cortical thickness was extracted for each of the 308 cortical regions in each individual subject 

and these formed the basis for creating group based adjacency matrices of structural covariance.  

4.2.4 Graph	construction	

Age was linearly regressed out of the cortical thickness estimates as variation in structural 

measurements is likely to be strongly related to age especially when it concerns cortical 

thickness (Alexander-Bloch, Giedd, et al., 2013) and more so if the age range is considerable 

(as was the case in the present data). There is considerable variety in literature with regards to 

including total grey matter volume as a covariate. In autism it is known that total grey matter 

volume may be correlated with the main factor of biological sex (Lai, Lombardo, Suckling, et 

al., 2013) and including it as a covariate would likely remove a lot of variance explained by 

that target independent variable. For this reason, it was decided not to include grey matter 

volume as a covariate.  

 

Graph analyses were done using custom Matlab code, combined with functions from the Brain 

Connectivity Toolbox (https://sites.google.com/site/bctnet/) for computing graph metrics. 
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Graphs were constructed from the residual cortical thickness measures by taking the Pearson 

correlation coefficients between atlas regions across individuals within one group, resulting in 

4 matrices of 308 by 308 correlation values. For all graph metrics the minimum density was 

estimated as the starting point for computing metrics over a range of densities. The minimum 

density is the minimum threshold for including nodes in the network at a level at which all 

nodes are still connected. This is done to ensure that the graphs that are compared across groups 

have the same degree, as different degrees will likely bias any group comparisons (van Wijk et 

al., 2010). Subsequently all global graph metrics were computed between 1% and 20% 

densities, analogous to previous literature (Alexander-Bloch, Giedd, et al., 2013) and 

representative of plausible biological networks. Local graph metrics were computed for 

representative densities of 2, 5 and 10% and only consistent effects were entered into a post-

hoc analysis. Figure 4.1 gives an overview of the graph construction procedure, the raw group-

wise adjacency matrices and the binary matrix thresholded at 10% density for representation. 
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Figure 4.1: Methods overview 

Panel A shows the original cortical thickness data for each subject across all the parcellated nodes. From these 

images it is also apparent that in the female ASC group there is one participant (28) for which the Freesurfer 

segmentation failed. This subject was subsequently removed from further analysis, and its removal did not affect 

the group matching reported earlier. Panel B shows the same cortical thickness measurements after age is regressed 

out. This also indicates that the overall structure of cortical thickness across nodes remains relatively intact. Panel 

C shows the group-wise raw adjacency matrix. Panel D shows the binary matrix thresholded at 10% density.   

4.2.5 Data	analysis	

As only a single adjacency matrix for each group is obtained and not one for each individual, 

group comparisons rely on reconstructing a confidence interval or distribution for each group 

based on its original values. To test for group-wise differences in graph topological measures 

we bootstrapped (50 iterations with replacement) each matrix within each group to obtain 

confidence intervals on the estimates in the same fashion as done elsewhere (Alexander-Bloch, 
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Giedd, et al., 2013). In principal, increasing the number of bootstraps would generally increase 

the reliability of the estimated confidence intervals. In practice, using a large number of 

bootstraps potentially threatens the validity of statistical tests when comparing across the 

bootstrapped group distributions as it increases the degrees of freedom disproportionally to the 

original group size. Bootstrapping a sample by a factor of 500 results in 499 degrees of freedom, 

which is disproportional to the original sample size of the groups from which the measures were 

obtained1. Thus, in the present study we used a small number of bootstrap iterations (e.g. 50) 

that was close to the original sample size. This number of bootstraps showed robustness over 

several independent runs (e.g. there was no difference in obtained metrics in 5 independent 

runs).  

 

First, global metrics were investigated by calculating each metric over a range of costs and 

subsequently testing for the linearly expected rank-order. In order to test for expected rank 

differences the Jonckheere-Terpstra test was used (Jonckheere, 1954). The Jonckheere-Terpstra 

test provides more statistical power than the conventional Kruskal-Wallis or Mann-Whitney 

rank order test in cases where there are more than two groups. We used a matlab based 

implementation of this rank-order test  (Cardillo G. (2008) Jonckheere-Terpstra test: A 

nonparametric Test for Trends  

http://www.mathworks.com/matlabcentral/fileexchange/22159). Obtained test-statistics were 

corrected for multiple comparisons using a non-linear false-discovery rate (FDR) correction 

(Chumbley & Friston, 2009) with alpha set at p<0.05. 

																																																								
1 Note that this is only an issue when the bootstrapped confidence intervals are subsequently 
used for parametric testing of linear effects as was done in the present sample. 
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Second, individual nodal properties of each parcellation node were assessed by specifically 

looking at expected rank-order in local metrics (degree, clustering, betweenness centrality and 

local efficiency) using the Jonckheere-Terpstra test (Jonckheere, 1954) for expected rank order. 

As mentioned before the analysis was stratified on biological sex for the autism groups. All p-

values resulting from this analysis were FDR corrected (Chumbley & Friston, 2009) using a 

stringent non-parametric FDR correction set at p<0.01. All local metrics were computed at 

representative densities of 2, 5 and 10 percent. The Jonckheere-Terpstra test does not test the 

direction of the linear rank and also allows for individual pairs in the rank to not be significantly 

different (e.g. group1>group2=group3 will also result in a significant effect of rank order). Thus 

this test is only suitable to test a main two-tailed effect of rank order and pairwise post-hoc tests 

were used to assess the direction and individual contribution of group pairs. Only nodes 

showing a significant main effect were entered into the post-hoc analyses. 

4.3 Results	

The distribution of Pearson correlation coefficients of stuctural was similar across all four 

groups and as expected was slightly skewed towards positive correlations (Figure 4.2). 

Although there appears to be a small difference between the two male groups, two-sample 

Kolomogorov-Smirnov tests did not indicate any significant differences between any of the two 

pairs. This suggests that there is no clear a-priori bias in constructing graph metrics based on a 

global difference in connectivity structure. As the interpretation of a difference in negative and 

positive correlations in (f)MRI constructed graphs is unclear (and the mean of the distribution 

is influenced by pre-processing, especially by different kinds of regression and thus partially 

arbitrary) it is common practice to base graph construction on the absolute correlation values. 

The same was done in constructing the adjacency matrices for structural covariance networks.  



4.3	Results	 83	

	

	 Page	|	83	

	

	
Figure 4.2: Correlation distribution 

Panel A shows the Pearson correlation estimates of structural covariance for all four groups. Panel B shows the 

probability density for these distributions.  

4.3.1 Global	measures	

First, whole brain measures were explored at representative network densities of 2, 5 and 10 

percent (Alexander-Bloch, Giedd, et al., 2013). Degree is perhaps the most fundamental graph 

theoretical measure, representing the number of connections that each node has. Figure 4.3A 

shows the degree distribution of all four groups across representative densities. As would be 

expected in a non-random biological network all the distributions show a positive skewness 

(Sporns, 2011). There were no significant differences in the underlying degree distributions of 

the four groups. They all show a comparable level of skewness, although at increasing density 
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the male neurotypical group shows a slightly narrower distribution. Nonetheless, the degree 

distributions confirm that the constructed networks are biologically plausible and give a certain 

degree of confidence that the network construction was done appropriately.  

 

Secondly, a number of measures were explored at a range of costs (Figure 4.3, Panel B) and the 

Jonckheere-Terpstra test for linear rank order was performed on the stratified groups. 

Characteristic path length is arguably one of the most fundamental metrics in graphs as most 

subsequent measures are based on this (second perhaps only to degree). Path length represents 

the average distance between two nodes in a network (e.g. the number of paths you have to 

travel on average to reach another node from any given node). In the present sample no 

differences were observed in characteristic path length across the investigated densities. 

Although the female autism group slightly deviated from the other groups for some densities, 

these differences did not show a significant linear rank order effect that survived multiple 

comparison correction across costs. Global efficiency of the networks also showed no 

significant rank order effects. Again, the female autism group seems to deviate slightly from 

the other groups at some cost points but none of these were enough to show a significant rank 

order effect. 

 

As regions are further separated in a physical distance some the functional connectivity 

properties are likely to diminish as well (Sporns, 2011). To evaluate the extend to which the 

network might subdivide into local sub-networks one can look at clustering properties of 

individual nodes (e.g. the extend to which nodes connect to close neighbours). When looking 

at global clustering properties (e.g. the average of local clustering) the metric might be biased 

towards nodes that have a relatively high clustering coefficient. Transitivity provides a 
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normalized measure of this clustering index that does not suffer from the same bias (Mark 

Newman, 2010; Sporns, 2011). As can be seen in Figure 4.3, panel B there are some group 

differences in transitivity across the four groups, especially at densities above 10%. The rank 

order of these differences however does not follow the EMB or GI expected order (and thus the 

Jonckheere-Terpstra test detected no significant main differences for that group). There appears 

to be a sex difference in the neurotypical group. This difference, although perhaps ‘extreme’ in 

the sense that it goes beyond the neurotypical sex difference, was not significant for either the 

male or the female autism group and furthermore would be extreme in the opposite direction 

(towards ‘extreme female’).   

 

Positive assortativity is essentially a measure of the degree to which high-degree nodes connect 

to other high degree nodes (and negative assortativity is indicative of low-degree nodes 

connecting to other low degree nodes) (Mark Newman, 2010; Sporns, 2011). The measure is 

adopted mostly from epidemiology where it is used to model the potential spread of disease 

using the assumption that networks with high assortativity are more prone to a quick spread 

(e.g. information propagates faster in networks where high degree nodes connect to other high 

degree nodes). In brain networks it can be taken as a proxy for studying the potential of 

information spread where highly assortative brain networks would be able to propagate 

information more easily. In general, positive assortativity is indicative of a network that is not 

dispersed or disconnected but instead has relatively good coherence (Sporns, 2011). Brain 

networks in general always show positive assortativity. In the present dataset differences in 

assortativity could be observed across all four group but these differ depending on the density 

at which the network is thresholded. Above 10% density only the female autism group showed 

somewhat higher assortativity. None of these differences show a clear rank order effect as 
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predicted by EMB or GI theory nor do they appear very consistent at lower densities. In short, 

most of our global measures show fairly consistent patterns that seem robust across the four 

groups. It could be that looking at whole-brain measures might be too coarse an approach to 

pick up diagnostic or sex differences in these groups.  

	

 
Figure 4.3: Graph metrics 

Panel A shows the degree distributions for the 4 groups over the three different costs. Panel B shows results for 

global measures of path length, efficiency, transitivity and assortativity. Shaded areas show the standard error of 

the mean as based on the bootstrapping procedure described above. 

4.3.2 Local	measures;	main	effects	

Investigating nodal or local effects of degree, clustering, betweenness centrality and efficiency 

there are a number of regions that show a linear rank order main effect in each group (Figure 
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4.4). Specifically, for degree and centrality a number of regions frequently associated with 

autism in particular and social cognitive functioning in general stand out. Namely, the anterior 

insula, anterior and mid cingulate cortex, areas around the right temporo-parietal junction 

(rTPJ), the middle frontal gyrus and dorso-lateral prefrontal cortex, the left middle and superior 

temporal gyrus, posterior parts of the fusiform gyrus and occipito-temporal areas. 
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Figure 4.4: Topological effects 

Topological distribution of local main effects for Degree, Clustering, Betweenness Centrality and Efficiency at 

densities of 2, 5, and 10 percent as well as an overview of consistent local differences across all densities. Only 

significant nodes are shown (p<0.05) corrected for multiple comparisons across all 308 nodes using a non-linear 

FDR correction set at p<0.01. Colour indicates relative value of the Jonckheere-Terpstra test statistic (comparable 

to a conventional F-value). For the columns indicating where effects where consistent across all densities the 

average JT test-statistic is presented. Panel A shows the results for analysis group 1, Panel B shows the results for 

analysis group 2.  

 

As the Jonckheere-Terpstra test allows for non significant differences within individual pairs 

and only tests the overall linear rank order (e.g. it is a two-tailed test) we subsequently 

conducted two-tailed Post-Hoc independent samples t-tests (with alpha set p<0.05) for each 

node of each pair of the expected rank. These tests were conducted on the networks weighted 

at 10% density and only areas that had previously shown consistent main effect differences for 

the respective measure and analysis group were included. As with the main rank order tests all 

resulting p-values were corrected for multiple comparisons using a non-linear FDR correction 

of p<0.01 (taking into account all 308 nodes). As with the analyses above these were stratified 

for the two analysis groups as well. 

 

4.3.2.1 Local	measures:	analysis	Group	1	

As can be expected from the minimally consistent regions showing main rank order effects on 

clustering and local efficiency not all the individual comparisons contained regions that 

survived multiple comparison corrections on these two measures in the post-hoc tests. In both 

cases the aforementioned main effects were apparent mostly between the two neurotypical 

groups. Thus, only the other two local measures of degree and betweenness centrality are 

discussed in more detail below (Figure 4.5, Tables 4.2 and 4.3).  
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The measure of nodal degree showed differences across all three post-hoc tests. Differences 

were heterogeneous, but were mostly visible around left lateral occipital areas, right fusiform 

gyrus, lingual (occipital part), superior frontal and right supramargincal gyrus. Betweenness 

centrality is one of the few measures that has previously been studied in autism (Balardin et al., 

2015). Balardin and colleagues report differences in medial frontal, parietal and temporal-

occipital regions showing reduced betweenness centrality in autism. Our approach is slightly 

different; we investigated EMB and/or GI rank order effects, used a different more fine-grained 

parcellation scheme and used cortical thickness as opposed to GM volume. we also find areas 

of decreased betweenness that partially overlap with those findings. Interestingly we also 

observe some areas showing a pattern of increased centrality. Namely in left superior frontal, 

the rostral part of the middle frontal lobe, left postcentral gyrus, lingual areas and parts of the 

supramarginal gyrus.  

 

With respect to expected EMB rank order we found a number of regions that follow this pattern 

in either direction (decrease or increase). Most notably the anterior insula showed a positive 

EMB effect on both the degree and centrality measures. The same was true for left superior 

frontal areas and left anterior (rostral) cingulate. In addition, our analysis also highlights a 

number of regions where there seems to be some masculinization of the female profile in the 

sense that the neurotypical sex differences did not propagate to the female autism versus male 

neurotypical comparison. This was most apparent in bilateral superior and middle frontal areas 

(around Brodmann area 10), in lateral occipital areas and in parts of the precuneus.  
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Figure 4.5: Group 1 local effects    

T-maps of nodes showing increased (negative/blue) or decreased (positive/red) degree and centrality relative to 

the first mentioned group on the three Post-Hoc tests.  For example, in the first column the red colours represent 

areas where NT Male < NT Female, and blue colours represent the opposite.  Areas where the direction of 

differences for a specific region is consistent can be considered to follow an EMB pattern. Areas where there was 

a sex difference in the neurotypical groups, between the neurotypical and autism groups, but not between the male 

neurotypical group and the female autism group can be considered example of a GI rank order. 
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Table	4.2:	Post-Hoc	comparisons	group	1.		

Regions	showing	either	EMB	effects	or	GI	effects	on	Degree.	

 
 

 

Node
FC	-	MC
(T-score)

MC	-	FA
(T-score)

FC	-	FA
(T-Score)

lh_bankssts_part1 -5.32 -11.37 -18.17
lh_caudalmiddlefrontal_part3 -4.95 -3.45 -8.63
lh_fusiform_part3 4.52 4.38 8.00
lh_inferiorparietal_part4 -5.76 -5.89 -10.61
lh_lateraloccipital_part9 5.56 3.96 10.16
lh_lingual_part2 -3.53 -8.06 -10.39
lh_lingual_part4 -7.19 -7.58 -13.02
lh_parsopercularis_part1 11.21 7.97 17.59
lh_pericalcarine_part1 -13.64 -3.54 -11.63
lh_postcentral_part3 -6.93 -3.97 -10.69
lh_posteriorcingulate_part1 5.31 7.94 12.87
lh_precuneus_part3 4.49 3.63 9.43
lh_rostralanteriorcingulate_part1 5.17 7.81 12.89
lh_superiorfrontal_part7 5.14 4.17 8.54
lh_superiorfrontal_part11 -6.00 -6.71 -12.75
lh_insula_part1 14.21 7.80 20.81
lh_insula_part3 8.60 6.75 15.04
rh_bankssts_part1 -4.72 -4.85 -8.98
rh_inferiorparietal_part4 -5.07 -6.71 -11.33
rh_postcentral_part8 -5.02 -4.35 -7.81
rh_superiortemporal_part3 7.30 4.37 12.36
rh_supramarginal_part4 3.80 3.60 7.24
rh_supramarginal_part7 -5.00 -4.65 -9.80

Node
FC	-	MC
(T-score)

MC	-	FA
(T-score)

FC	-	FA
(T-Score)

lh_caudalanteriorcingulate_part1 4.64 NS 6.84
lh_caudalmiddlefrontal_part4 7.42 NS 6.90
lh_inferiortemporal_part3 -6.10 NS -7.20
lh_lateraloccipital_part7 6.22 NS 5.30
lh_paracentral_part3 10.67 NS 9.46
lh_pericalcarine_part2 -7.54 NS -7.35
lh_precentral_part6 -9.11 NS -8.89
lh_precuneus_part1 6.14 NS 5.82
lh_rostralmiddlefrontal_part1 6.40 NS 9.33
lh_superiorfrontal_part2 -9.56 NS -10.63
lh_superiortemporal_part4 9.67 NS 9.72
lh_superiortemporal_part7 5.42 NS 8.54
lh_supramarginal_part1 6.70 NS 4.98
lh_transversetemporal_part1 7.35 NS 4.53
rh_bankssts_part2 -7.69 NS -7.05
rh_cuneus_part3 -4.68 NS -6.90
rh_inferiorparietal_part10 5.17 NS 3.63
rh_inferiortemporal_part3 -10.00 NS -7.96
rh_isthmuscingulate_part1 5.68 NS 6.98
rh_lateraloccipital_part2 -6.77 NS -6.14
rh_parsopercularis_part1 9.06 NS 8.75
rh_parsopercularis_part2 7.03 NS 8.21
rh_pericalcarine_part3 -11.36 NS -10.55
rh_precentral_part1 11.22 NS 13.98
rh_rostralmiddlefrontal_part5 -3.73 NS -6.60
rh_rostralmiddlefrontal_part6 -4.74 NS -5.75
rh_rostralmiddlefrontal_part7 4.55 NS 3.96
rh_rostralmiddlefrontal_part8 -3.76 NS -4.20
rh_superiorfrontal_part2 8.80 NS 7.34
rh_superiorfrontal_part5 -10.88 NS -9.06
rh_superiorparietal_part2 -4.82 NS -7.13
rh_superiorparietal_part7 9.60 NS 8.46

Gender	Incoherence

Degree
Extreme	Male	Brain
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Table	4.3:	Post-Hoc	comparisons	group	1.		

Regions	showing	either	EMB	effects	or	GI	effects	on	Betweenness	Centrality	

 
 

 

 

 

Node
FC	-	MC
(T-score)

MC	-	FA
(T-score)

FC	-	FA
(T-Score)

lh_bankssts_part1 -5.57 -9.52 -13.84
lh_caudalmiddlefrontal_part3 -5.01 -3.68 -8.83
lh_lingual_part2 -3.69 -6.68 -10.08
lh_pericalcarine_part2 -7.49 -4.94 -9.54
lh_postcentral_part3 -7.60 -4.17 -10.71
lh_posteriorcingulate_part1 5.39 5.08 10.11
lh_precuneus_part3 5.23 4.29 11.44
lh_rostralanteriorcingulate_part1 3.61 5.38 9.65
lh_superiorfrontal_part12 5.68 8.51 11.80
lh_insula_part1 11.15 7.91 15.87
lh_insula_part3 7.41 5.10 11.79
rh_lateraloccipital_part6 -4.06 -3.75 -6.78
rh_medialorbitofrontal_part1 6.69 3.69 9.78
rh_superiorfrontal_part6 3.67 12.36 13.20

Node
FC	-	MC
(T-score)

MC	-	FA
(T-score)

FC	-	FA
(T-Score)

lh_caudalmiddlefrontal_part4 9.37 NS 11.79
lh_lateraloccipital_part7 6.69 NS 4.14
lh_lateraloccipital_part9 4.79 NS 7.47
lh_paracentral_part3 12.09 NS 13.35
lh_parsopercularis_part1 7.67 NS 7.75
lh_pericalcarine_part1 -7.28 NS -8.45
lh_precuneus_part1 8.58 NS 6.87
lh_precuneus_part2 5.79 NS 6.26
lh_rostralmiddlefrontal_part1 5.01 NS 4.97
lh_rostralmiddlefrontal_part3 4.27 NS 5.11
lh_superiorfrontal_part1 -5.08 NS -5.16
lh_superiorfrontal_part2 -10.98 NS -10.91
lh_superiortemporal_part7 6.07 NS 7.81
lh_supramarginal_part1 4.76 NS 7.29
rh_bankssts_part2 -4.42 NS -6.62
rh_cuneus_part3 -4.77 NS -7.43
rh_inferiorparietal_part10 5.83 NS 4.88
rh_inferiortemporal_part1 -8.39 NS -7.26
rh_lateraloccipital_part2 -6.45 NS -5.02
rh_parsopercularis_part1 6.33 NS 8.50
rh_parsopercularis_part2 6.56 NS 3.82
rh_pericalcarine_part3 -6.72 NS -4.13
rh_precentral_part1 10.71 NS 10.44
rh_rostralmiddlefrontal_part5 -4.83 NS -4.72
rh_rostralmiddlefrontal_part6 -3.66 NS -6.27
rh_rostralmiddlefrontal_part7 5.84 NS 6.56
rh_superiorfrontal_part2 9.52 NS 10.23
rh_superiorfrontal_part9 7.69 NS 7.35
rh_superiorparietal_part6 5.56 NS 7.45
rh_superiorparietal_part7 9.87 NS 7.91
rh_supramarginal_part7 -4.54 NS -6.11
rh_frontalpole_part1 4.43 NS 5.13

Extreme	Male	Brain

Gender	Incoherence

Betweenness	Centrality
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4.3.2.2 Local	measures:	analysis	Group	2	

As with the analysis of group 1 clustering nor local efficiency showed consistent post-hoc 

effects. Again degree and betweenness centrality are the measures showing the strongest effects 

(Figure 4.6, Tables 4.4 and 4.5). Most consistently are differences in degree as well 

betweenness centrality in regions around the right temporo-parietal junction (rTPJ), temporal 

occipital and supramarginal areas. Left anterior insula also showed a consistent difference. With 

respect to expected rank order order these regions all follow the order as predicted by the EMB 

theory. The direction of this EMB order did differ between sub-regions. For example, one part 

of the supramarginal gyrus showed a positive effect (NT Female<NT Male<Autism Male), and 

another showed a negative EMB order (NT Female>NT Male>Autism Male). Apart from one 

sub-region in inferior parietal cortex there were no regions showing a GI effect in analysis 

group 2. Thus, there were no regions that showed a feminization of the male autism group.  
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Figure 4.6: Group 2 local effects    

T-maps of nodes showing increased (negative or blue) or decreased (positive or red) degree and centrality relative 

to the first mentioned group on the three Post-Hoc tests.  For example, in the first column the red colours represent 

areas where NT Male < NT Female, and blue colours represent the opposite.  Areas where the direction of 

differences for a specific region is consistent can be considered to follow an EMB pattern. Areas where there was 

a sex difference in the neurotypical groups, between the neurotypical male and male autism groups, but not 

between the female neurotypical group and the male autism group can be considered example of a GI rank order. 

	

	

	

	

	

	

	

	

	

	



96	 Altered	structural	brain	organization	in	adults	with	autism	

	

	Page	|	96	

Table	4.4:	Post-Hoc	comparisons	group	2.		

Regions	showing	an	EMB	effect	in	Group	2.	There	were	no	regions	showing	GI	patterns	in	this	group.	

	

 
 

Table	4.5:	Post-Hoc	comparisons	group	2.		

Post-Hoc	comparisons	of	regions	showing	an	EMB	effect	in	Group	2.	There	was	only	one	region	showing	a	

GI	effect	

 

Node
FC	-	MC
(T-score)

MC	-	MA
(T-score)

FC	-	MA
(T-Score)

lh_bankssts_part1 -5.32 -13.04 -19.99
lh_caudalanteriorcingulate_part1 4.64 4.36 9.59
lh_inferiorparietal_part4 -5.76 -5.40 -10.34
lh_lateraloccipital_part4 -8.63 -4.97 -12.13
lh_medialorbitofrontal_part2 -3.89 -9.34 -12.77
lh_paracentral_part3 10.67 4.46 18.38
lh_parsopercularis_part3 -6.23 -3.96 -9.98
lh_postcentral_part8 4.74 4.00 9.01
lh_precuneus_part6 6.33 4.68 9.69
lh_superiorfrontal_part7 5.14 5.02 9.66
lh_supramarginal_part6 4.25 4.02 8.15
lh_insula_part1 14.21 3.60 15.06
lh_insula_part3 8.60 8.31 16.87
rh_bankssts_part2 -7.69 -7.79 -14.09
rh_inferiorparietal_part4 -5.07 -10.89 -16.72
rh_inferiorparietal_part7 -8.41 -3.74 -12.61
rh_isthmuscingulate_part1 5.68 12.74 19.04
rh_lateraloccipital_part2 -6.77 -10.08 -15.02
rh_lateraloccipital_part8 4.03 4.91 9.17
rh_rostralmiddlefrontal_part2 -5.04 -11.30 -15.22
rh_superiorfrontal_part11 -4.87 -5.42 -11.14
rh_supramarginal_part3 5.20 5.78 11.70
rh_supramarginal_part7 -5.00 -5.52 -10.87

Degree
Extreme	Male	Brain

Node
FC	-	MC
(T-score)

MC	-	MA
(T-score)

FC	-	MA
(T-Score)

lh_bankssts_part1 -5.57 -15.24 -20.01
lh_insula_part3 7.41 7.72 14.01
rh_bankssts_part2 -4.42 -8.65 -12.02
rh_isthmuscingulate_part1 3.82 4.94 7.89
rh_lateraloccipital_part2 -6.45 -9.41 -13.16
rh_lateraloccipital_part7 3.66 4.26 8.39
rh_lateraloccipital_part8 6.98 3.96 10.43
rh_rostralmiddlefrontal_part9 4.71 4.49 9.02
rh_supramarginal_part7 -4.54 -6.02 -9.77

Node
FC	-	MC
(T-score)

MC	-	MA
(T-score)

FC	-	MA
(T-Score)

rh_inferiortemporal_part2 -4.70 7.04 NS

Extreme	Male	Brain

Gender	Incoherence

Betweenness	Centrality
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4.4 Discussion	

The present results further reinforce the importance of accounting for biological sex in studying 

the neurobiology of autism. We found main effects of biological sex in all the measures that 

were investigated in the neurotypical groups. This in itself was not the main purpose of the 

present study and our findings would need to be replicated in a study designed to test normative 

sex differences and larger samples, they do however reinforce the importance of taking into 

account biological sex in neuroimaging (Ruigrok et al., 2014). Interestingly, and of particular 

interest in this study, was the fact that biological sex seems to affect autism differentially. Both 

in female and male groups of individuals with autism did we find extremes of the neurotypical 

sex difference as well as indications of gender incoherence.  Our results also show a 

heterogeneous pattern of decreases and increases of nodal degree and betweenness centrality 

that follows similar patterns of exaggerated neurotypical sex differences as well as gender 

incoherence.  

4.4.1 Global	

At a global scale, and specifically in relation to transitivity, the connectivity pattern does not 

completely fit with the EMB theory but at times more closely resembles an account of gender 

incoherence (Bejerot et al., 2012). In contrast to the EMB theory, this account suggests that 

females with autism would show masculinisation (e.g. are closer to neurotypical males than 

females) and the male autism group might show feminization (e.g. be closer to neurotypical 

females). The sparse collection of neuroimaging studies that investigated female autism indeed 

find those patterns (Alaerts, Swinnen, & Wenderoth, 2016; Lai, Lombardo, Suckling, et al., 

2013). The present global clustering effects on structural covariance however present a 

somewhat intermediate pattern where the autism groups appear to be more of an extreme in the 
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direction of feminization. As none of the global measures showed clear significant rank order 

effects in either of the analysis groups this suggestion is something that would require further 

study. The relatively small effects reported here can not be taken as conclusive evidence for 

either GI or EMB. 

4.4.2 Local	

At the nodal level there were a number of regions that showed EMB linear rank order effects 

in both stratified groups, most notably the anterior insula. Across both analysis groups the 

anterior insula showed decreased degree in the autism groups compared to the control groups. 

This region has often been associated with hypo-activation and hypo-connectivity in autism 

(Caria, de Falco, Falco, & Caria, 2015; Uddin, Supekar, & Menon, 2010), but also with 

language delay and GM volume differences (Lai et al., 2014). Perhaps unsurprisingly this 

region also shows decreased regional cerebral blood flow (rCBF) (Ohnishi et al., 2000). 

Activation (as measured with BOLD fMRI), rCBF and disconnectivity are likely to be related 

or at least to be measuring similar underlying neural constructs. Furthermore, Nordahl and 

colleagues (Nordahl et al., 2007) showed that this area also exhibited abnormal cortical folding 

in children with autism. Thus, there is some converging evidence to suggest that this region 

might develop differently in individuals with autism that causes both functional as well as 

structural covariance network changes. As with all network analysis the link to a clear 

behavioural talent or deficit remains speculative, but as this region is strongly involved in 

agency and self-other distinctions (Craig, 2009) it is tentative to suggest that it might be linked 

to that aspect of the autism phenotype. 
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In addition to the anterior insula, inferior temporal gyri and temporal-occipital areas showed 

main linear rank order effects. These areas have been implicated in autism mostly with respect 

to the processing of faces (Pierce, Müller, Ambrose, Allen, & Courchesne, 2001). Studies 

routinely show that individuals with autism process faces differently and Pierce and colleagues 

(2001) showed that they might in fact use different underlying neural systems to do so. The 

current differences in structural covariance might reflect this behavioural and neural difference. 

If these regions are consistently differentially activated during development than it seems 

plausible that their structural covariance might differ as well. In other words differentially 

activated and functionally related areas could results in different patterns of synaptogenesis 

(Katz & Shatz, 1996). However, the difference in areas recruited for face-processing could also 

be the result of an early neuroanatomical difference. In that logic, the structural covariance 

difference observed reflects the result of a different developmental trajectory that might not be 

driven by functional activation (but perhaps by genetics as noted in the previous chapter).  

 

Perhaps the most interesting area to show a main rank order effect is the area around the rTPJ. 

This region is often associated with mentalizing, theory of mind, self-other distinctions and 

social impairments in autism (Lombardo et al., 2011). It has been a region of interest in many 

neuroimaging studies looking into theory of mind (ToM) deficits in autism (Kaiser et al., 2016; 

Kana, Keller, Cherkassky, Minshew, & Just, 2009; Lombardo et al., 2011). In a previous study 

investigating precisely a ToM network of brain regions it was shown that individuals with 

autism show reduced covariance in TPJ regions (Bernhardt, Valk, et al., 2014; Bernhardt, 

Klimecki, Leiberg, & Singer, 2014). The present findings fit well with the idea of a disruption 

in this region that might be further modulated by biological sex.  
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When zooming in on the female autism group analysis it is most interesting to note that a large 

number of brain regions tend to show a pattern of masculinization that fits with earlier research 

on sex differences in autism neuroanatomy (Lai, Lombardo, Suckling, et al., 2013). Moreover, 

the opposing feminization of the male autism group was not apparent and this strengthens the 

notion that biological sex might influence autism neuroanatomy differentially. The analysis 

group that included the female autism group also showed areas that follow an extreme male 

brain pattern most notably in the anterior insula.  

 

When looking at the male autism group there were almost no regions showing gender 

incoherence effects. This suggests that there is no pattern of feminization of the male autism 

group. In contrast, there were a number of areas that showed effects that fit the EMB account. 

Again this included the anterior insula, but also the lateral occipital and supramarginal areas. 

As with the anterior insula these regions have been associated previously with differences in 

self-other distinctions (Salmi et al., 2013). They also partially overlap with findings of structural 

abnormalities across autism and ADHD (Brieber et al., 2007). Given this regions’ involvement 

in language processing it is also tentative to speculate on its relation to potential differences in 

language processing (Lai et al., 2014). However, further studies are needed to establish a clear 

behavioural link between the present structural covariance differences and behavioural traits. 

 

Overall the post-hoc analyses revealed that both in the female as well as the male autism groups 

there are patterns that are in line with the EMB theory. We also found regions that fit with the 

notion of GI theory, but only in the female ASC group. How these differences in structural 

covariance might relate back to behavioural differences between the four groups remains to be 

understood and this should be an important target for future research. Combining structural 
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neuroanatomical measures with functional measures would be a step forward in better 

understanding the neurobiology of autism. It also seems apparent that network differences 

across sex and diagnosis are not easily captured in terms of hypo- or hyper-connectivity or 

increase or decrease of a certain feature. The overall picture is much more heterogeneous and 

depending on the region both increases as well as decreases in nodal and global network 

properties are found. Regardless of the direction, a large proportion of these effects are captured 

by a linear order such as EMB or GI would predict.  

 

Lastly, the present study strongly reinforces the notion that it is of the utmost importance that 

stratification by biological sex be considered in moving autism research forward. We find 

diverging patterns of structural covariance when stratifying the analyses by biological sex and 

these differences are not fully captured by just one overall theory. Taking into account 

biological sex will furthermore reduce the heterogeneity of an otherwise very heterogeneous 

group and will hopefully lead to a more targeted approach in understanding and studying the 

neurobiology of autism. 
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Chapter	5 Altered	functional	brain	organization	

in	autism	

5.1 Introduction	

In recent years resting-state fMRI and diffusion tensor imaging have become the tools of choice 

for researchers studying the organisation of the human brain (Bullmore & Sporns, 2009). For 

much longer however researchers have been using electroencephalography (EEG) as a method 

to investigate cortical connectivity and organizational patterns (Thatcher, Krause, & Hrybyk, 

1986). Although EEG suffers from an obvious lack in spatial resolution it makes up for this in 

temporal resolution with some systems now allowing recording speeds of over 4K Hz. This 

higher temporal resolution also allows one to study other characteristics on the measured signal 

such as power spectral densities of certain frequencies, phase amplitudes and other frequency 

information. 

 

For autism research, EEG has mostly been used in paediatric samples (Billeci et al., 2013), most 

likely because it is less invasive than MRI, arguably less sensitive to physiological noise (such 

as motion) and likely more cost effective. Most of these studies have focused on posterior or 

anterior asymmetries in power spectral density (Burnette et al., 2011; Gabard-durnam, Tierney, 

Vogel-Farley, Tager-Flusberg, & Nelson, 2013; Stroganova et al., 2007). This is perhaps not 

surprising given the wide body of literature on possible abnormalities in the corpus callosum, 

the main inter-hemispheric communication fibre bundle, in individuals with autism (Paul, 

Corsello, Kennedy, & Adolphs, 2014). For example, Stroganova and colleagues (2007) report 
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a relative increased leftward asymmetry in boys with autism compared to a neurotypical control 

group and absence of a normally present leftward mu rhythm asymmetry. In addition, they 

showed that age and developmental delay were significant predictors for the alterations in EEG 

patterns.  

 

However, it is difficult to tease apart the exact contribution of namely developmental delay as 

this variable is likely linked to the diagnosis itself. Interestingly though, Gabardine-Durnam 

and colleagues (2013) also show a relation between the development of EEG asymmetry 

patterns and risk for autism. Using groups divided into high and low-risk for autism and 

focussing specifically on previously reported frontal alpha asymmetries, they show that these 

two groups show different asymmetry trajectories over the course of development. Here, 

children with a low risk for developing autism show a relative rightward asymmetry of frontal 

alpha power as opposed to the high-risk group showing no clear asymmetrical power 

distribution in these frontal networks. Over the course of development however these patterns 

appear to crossover, with the low risk group slowly getting a less negative asymmetry and the 

high group slowly changing to a more negatively directed asymmetry pattern. Furthermore, left 

frontal asymmetry has been associated with decreased symptomatology and a later onset of 

symptoms (Burnette et al., 2011).  In sum, these findings may suggest EEG asymmetry to be a 

potential biomarker.  

 

In addition, it has been suggested that left frontal cortical activity underlies positive emotions 

and approach motivation, whereas right frontal cortical activity would be related to negative 

emotions and withdrawal motivation (Harmon-Jones, 2003). However, it is important to bear 

in mind that approach direction and emotional valence are not always associated (e.g. anger, 
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greed or lust are usually linked to approach behaviour, though often triggering negative 

emotions and undesired consequences). Furthermore, greater left than right frontal cortical 

activity measured by resting EEG has been found to correlate with trait anger (Harmon-Jones, 

2003; Harmon-Jones & Allen, 1998), suicidal tendencies (Rohlfs & Ramírez, 2006), impulsive 

aggression in adolescents with affective and disruptive behaviour disorders (Rybak, Crayton, 

Young, Herba, & Konopka, 2006) or in persistently violent psychiatric patients (Convit, 

Czobor, & Volavka, 1991). This might fit with the social communication element in autism. 

Namely, right frontal asymmetry as an indicator of increased withdrawal could be a result of 

impaired or stressful social communication. Vice versa, if increased left frontal asymmetry is a 

marker for positive emotions and approach motivation this could also be marker for behavioural 

elements that might add some resilience in the case of autism. 

 

In most studies there is however also heterogeneity in findings about power spectral 

asymmetries (Wang et al., 2013). In large parts this heterogeneity might be the result of 

differing age groups and testing conditions (task or no task, eyes-closed or open etc.). In order 

to ensure robustness of findings it is thus paramount to ensure a well-matched sample of 

neurotypical and autistic participants and ensure testing conditions are consistent between 

testing sessions. In addition to these measures the current study also used a small independent 

replication dataset collected at the Centre for Research on Autism and Education.  

 

Although there have been numerous indications of altered cortical organisation in autism, as 

highlighted in the introduction (Belmonte et al., 2004; Vissers et al., 2012) no clear pattern has 

emerged and the asymmetry hypothesis seems possibly somewhat of an oversimplification. 

Few studies to date have made use of the rich information in resting-state EEG signals to 
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reconstruct potential network alterations at a whole brain level (Fallani et al., 2010). Especially 

in paediatric samples, EEG can be a less invasive method. Additionally, due to its high temporal 

resolution, EEG resting-state recordings only require a few minutes of data collection and are 

arguably less sensitive to noise resulting from head motion. In the present study we used high 

temporal resolution resting-state EEG (recorded at 2048 Hz) to assess differences in functional 

cortical organization of individuals with and without autism. In addition, we used a more robust 

measure of connectivity (as opposed to coherence or correlation); the weighted phase lag index 

(WPLI) (Stam, Nolte, & Daffertshofer, 2007; Vinck, Oostenveld, Van Wingerden, Battaglia, 

& Pennartz, 2011). Given that EEG is a relatively untouched tool to assess brain network 

alterations in autism we gathered two separate datasets. The first dataset is being collected at 

the Autism Research Centre in Cambridge (ARC) and serves as a discovery dataset. The second 

dataset is collected at the Centre for Research on Autism and Education (CRAE) at University 

College London and serves as a replication dataset. Data collection at both sites is ongoing and 

as previously mentioned the analysis presented here should be considered pilot data. 

5.2 Methods 

5.2.1 Participants: Autism Research Centre – University of Cambridge 

A total of 58 participants were recruited as part of a larger EEG study that included resting-

state EEG at the start of every session and a further additional 4 computerized tasks not 

described here. Recruitment was conducted via the Cambridge Autism Research Database 

(CARD) that also includes neurotypical individuals, as well as via online advertisements. A 

total of 14 individuals had previously been diagnosed with an autism spectrum condition took 

part (age: 38.85±11.69). The remaining 44 participants had never received a diagnosis of autism 

(age: 37.57±9.31). Prior to taking part all participants provided written informed consent and 
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completed a digital health screening assessment as well as the autism spectrum quotient 

questionnaire (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001) (AQ) online. 

Both groups were matched on age using a non-parametric Wilcoxon signed rank test (W: 395, 

p = 0.115) and differed significantly on the AQ (W: 579, p = 8.62*10-7). Boxplots on both 

metrics are shown in figure 1 below. 

	
Figure 5.1: Descriptive statistics 

Panel A shows the mean age of participants from both groups, panel B shows their AQ scores.  White lines within 

the barplots represent the group mean, error bars represent standard deviations, participants who deviated more 

than 2 standard deviations from the mean are noted individuals. 

5.2.2 Participants: Centre for Research in Autism Education 

A total of 32 participants were recruited as part of a larger EEG study that included resting-

state EEG at the start of every session and a further computerized task not described here. 

Recruitment was conducted via flyers around UCL (University College London) campus, social 

media advertisement (i.e Facebook, Twitter) and through the ICN (Institute of Cognitive 

Neuroscience, UCL) database. A total of 13 individuals had previously been diagnosed with an 

autism spectrum condition took part (age: 30.42±11.98). The remaining 19 participants had 

never received a diagnosis of autism (age: 35.54±15.17). Prior to taking part all participants 

provided written informed consent and completed a brief health screening assessment. 
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5.2.3 Recording	procedure	

Participants were seated in a comfortable adjustable chair, their head circumference was 

measured to determine the appropriate cap size and participants were asked to put on a BioSemi 

EEG cap themselves. Next, two researchers placed all electrodes onto the caps. EEG was 

recorded using 64 scalp Ag/AgCl tipped electrodes in accordance with the International 10/20 

system, using an ActiveTwo EEG system from BioSemi (BioSemi, Amsterdam, The 

Netherlands). External electrodes were placed on the mastoid for post-hoc signal referencing 

and around the eyes to allow optional post-hoc eye-blink assessment.  

 

After inserting all electrodes, they were all visually inspected online for potential line noise by 

a trained researcher and adjusted (increasing the amount of conductance gel or replacing the 

electrode) appropriately. Resting-state EEG was recorded during a four-minute session, divided 

in four one-minute periods for; eyes-open, eyes-closed, eyes-open and eyes-closed. Participants 

received a written instruction on the screen and could start the resting-state period themselves 

by pressing any key on the keyboard in front of them. They were subsequently cued with a short 

non-obtrusive sound when the first minute had passed. Only eyes-closed segments were 

analysed to maximally avoid artefacts from eye-blinks. As this study was part of a larger EEG 

study in which participants also took part in a number of tasks, the resting-state recording was 

always done at the start of the procedure. 

5.2.4 Pre-processing	

Brain oscillations, as measured with EEG, are the result of the continued waxing and waning 

of electric field potentials generated simultaneously in a large number of vertically oriented 

apical dendrites of pyramidal nerve cells in the cerebral cortex (Silva, 1999). As a result, 
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changes in lower subcortical brain systems, will likely spread to cortical regions and can then 

indirectly be picked up by electroencephalography. A major issue in EEG connectivity studies, 

in contrast to functional magnetic resonance imaging, is the fact that electrical signals measured 

through the scalp conduct through the same scalp. This means that the primary source of the 

electrical activity conduct through a larger volume, making it difficult to differentiate primary 

signals using sensors that are placed in close proximity to each other (as is the case in EEG 

electrode placement). This problem in EEG is commonly known as the volume conduction 

problem (Cohen, 2014).  

 

Normally, when one estimates functional connectivity between signals from two different 

recording sites or nodes, Pearson correlations are used as a proxy for functional connectivity. 

Due to volume conduction however, the two signals from EEG electrodes are extremely likely 

to share a common source and will thus show high Pearson correlations that might be more 

related to Euclidean distance between electrodes than actual underlying connectivity. This 

would result in spurious high local functional connectivity between electrodes that are located 

in close proximity. To avoid the volume conduction bias in estimating functional connectivity 

between two time-varying signals one can instead use connectivity measures that are based on 

the phase or lag of the two signals. In the present data the weighted phase lag index (WPLI) 

was used as a measure of connectivity (Stam et al., 2007; Vinck et al., 2011). The phase lag 

index is a measure of the asymmetry of the distribution of phase differences. Stam et al. (2007) 

showed that in both real and simulated data this measure is much less affected by common 

sources (e.g. as a result of volume conduction) and active reference electrodes (as is the case 

with the BioSemi setup). The weighted variant (WPLI) provides a more reliable estimate across 

trials that is useful for subsequent graph analysis (Ortiz et al., 2012). 
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All pre-processing was carried out using fieldtrip (www.fieldtriptoolbox.org) using a similar 

pipeline as has been used before with the WPLI (Ortiz et al., 2012). All code used for the pre-

processing and subsequent analyses are available on GitHub and include detailed 

documentation on its usage: (http://bit.ly/2i2T8Un). The following basic pre-processing steps 

were carried out on each individual dataset; eyes-closed segments were selected, raw timeseries 

were re-referenced to a mastoid reference electrode, signal was de-trended (to remove linear 

trends), demeaned and bandpass filtered (<60Hz lowpass filter) and a discrete Fourier transform 

filter was used to remove potential 50Hz line-noise (van Diessen et al., 2014). Next, 

independent component analysis (ICA) was used to decompose the pre-processed time-series 

into maximally independent components (Hyvärinen, 1999a). These components were visually 

inspected for artefacts such as eye-blinks, heartbeats and other unclassified noise, which were 

subsequently removed from the signal (Figure 5.2).  

 

 

Figure 5.2: Example of ICA decomposition 

Panel A shows an example of a component containing signal from a predominantly noisy electrode in frontal 

parietal cortex. Panel B shows and example of a component that would be classified as true signal. 
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The non-noise ICA components were back-projected into the original signal space. The 

recording was segmented into 4-second segments and the first and last epoch were removed to 

avoid any potential interference from the open and closing of eyes between the one minute 

segments. To obtain power and cross spectra we used the fieldtrip multi-taper fast Fourier 

transform function (MTFFT). Multi-tapering is essentially a windowed Fast Fourier Transform 

(FFT) method designed to minimize spectral leakage (Harris, 1978). Spectral leakage occurs 

during normal FFT because it samples continuous data discretely whereas energy from other 

non-measured frequencies might spread their energy into the sampled frequencies. Multi-

tapering limits this effect by fitting multiple (usually Slepian) sequences to the cross-spectrum. 

This effectively smooths the power spectral estimate to include leakage and thus give a more 

accurate estimate of a specific frequency especially at the borders. However, using too many 

tapers risks over-smoothing the data and thereby including non-present frequency energy from 

neighbouring frequencies.  

 

For broad frequency spectra (such as alpha, beta and gamma) this is not an issue as the leakage 

is relatively small compared to the overall frequency bandwidth. For narrow frequency bands 

however using too many tapers has an increased risk of confounding the spectral estimate from 

neighbouring frequencies. In the present study a Hanning window tapering (with more discrete 

edges and thus less smoothing) was used for the low frequencies and fieldtrips default discrete 

prolate spheroidal sequence (DPSS; a set of Slepian sequences) was used for the other 

frequencies. Thus, during spectral density estimation the time-series were simultaneously split 

into the 5 well-known frequency bands: delta [2-4Hz], theta [4-7Hz], alpha [7-13Hz], beta [13-

30Hz] and gamma [30-60Hz].  
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5.2.5 Asymmetry	analyses	

To analyze inter- and intra-hemispheric asymmetry the power spectra density estimate of each 

electrode was used from the MTFFT estimate. To compute frontal asymmetry ratios, the 

following electrodes were chosen: Fc1, Fc2, Fc3, Fc4, Fc5, Fc6, F1, F2, F3, F4, F5, F6, F7, F8, 

AF3, AF4, AF7, AF8, Fp1 and Fp2. Uneven numbered electrodes present left hemisphere and 

even electrodes right hemisphere. A normalized frontal asymmetry index (FAI) was calculated 

by taking the mean power spectra of all left and right hemisphere electrodes respectively and 

combined using the following formula: [right-left]/[right+left]. To compute intra-hemispheric 

asymmetry left and right hemisphere were analyzed separately. Anterior electrodes included: 

F1, F2, F3, F4, F5, F6, F7, F8, AF3, AF4, AF7, AF8, Fp1 and FP2. Posterior electrodes 

included: O1, O2, PO3, PO4, PO7, PO8, P1, P2, P3, P4, P5, P6, P7, P8, P9 and P10. Again 

ratios were computed using: [anterior-posterior]/[anterior+posterior]. Although this is a 

relatively high number of electrodes, the inclusion of more channels/electrodes results in more 

reliable estimations of asymmetry (Kähkönen, Komssi, Wilenius, & Ilmoniemi, 2005; Schutter, 

de Weijer, Meuwese, Morgan, & van Honk, 2008). All computations were done in each of the 

5 separate frequency bands. Statistical group comparisons were carried out using non-

parametric permutation test (with 10.000 permutations, alpha set at p<0.05 and using the Welsh 

T-distribution) from the R Deducer package (http://www.deducer.org/). 

5.2.6 Connectivity	analyses	

Pairwise weighted phase lag indices (WPLI) formed the basis for reconstructing graph matrices 

for each of the five frequency bands across all electrodes. The main basic metrics of interest 

were: inter-hemispheric connectivity, path length, centrality and modular structure, and small-

world coefficient. To compare overall connectivity every connection was compared between 
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groups using a non-parametric two-tailed permutation test (using 10000 permutations) and the 

resulting p-value matrix was subsequently corrected for multiple comparison using FDR 

correction with alpha set at <0.05 (Benjamini & Hochberg, 1995). This FDR correction is 

arguably quite lenient for the present data. However, given the exploratory nature of the present 

analysis we chose a lenient threshold. For inter-hemispheric connectivity, the median (due to a 

non-normal distribution) absolute WPLI for all connections between left and right hemisphere 

was taken and compared between subjects. Graph metrics (Rubinov & Sporns, 2010) were 

computed on weighted binary matrices within a cost range of 0-30%. As a starting point to 

compute these the minimal spanning tree (MST) of the graph was used (Tewarie, van Dellen, 

Hillebrand, & Stam, 2015). The MST is the minimum set of connections needed to connect all 

electrodes. Only metrics that showed a consistent significant difference across multiple cost 

points were considered to be robust.  

5.3 Results:	ARC	Data	

5.3.1 Asymmetry	analysis	

Analyses of frontal cortical asymmetry indices (FAI) indicated no significant differences 

between the two groups as assessed using permutation testing in any of the 5 frequency bands 

(Figure 5.3). Visual inspection of power spectral density across the entire cortical region 

indicated no clear pattern differences between the two groups across the scalp, indicating that 

the lack of a difference is unlikely to be the result of the electrode selection. Across the 

frequency bands there does appear to be a slight trend towards positive indices for the autism 

group, whereas in the neurotypical group a more neutral pattern emerges. In the theta band for 

the autism group the FAI differs significantly from zero (t=2.888, p=0.013), which is not the 
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case for any of the frequency bands in the neurotypical group. This might suggest that the lack 

of effect studies might be more related to sample size and the number of outliers in both groups.  

	
Figure 5.3: Median power and group-comparison for each frequency band 

The left column shows the group median power spectral density for each frequency in the neurotypical group. The 

middle column shows the same information from the autism group. The right column shows the frontal asymmetry 

index (FAI) for each group as well as the t-statistic and p-value of the permutation test comparing each group. 
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5.3.2 Overall	connectivity	analysis	

Comparing overall connectivity between groups revealed a number of connections that 

appeared different (Figure 5.4). The most prominent differences were observed in the beta and 

theta bands. This in contrast to previous studies that have mostly focus on alpha band activity. 

In the beta band it was mostly right frontal (F8), right frontal-central (FC4, FC2) and right 

temporo-parietal (TP8) electrodes that showed consistent median under-connectivity in the 

autism group. Most of these connections were to left-frontal electrode sites (F1, AF7, F7, FC5, 

FC1, C3, C5) but also to more parietal (CP1, P3, P7) and temporal electrodes (T7). In all cases 

the median difference indicated reduced connectivity in the autism group. Interestingly, the 

inter-hemispheric connectivity ratio showed no group differences in any of the frequency bands. 

Given that there were some electrode specific connectivity differences in mainly a select set of 

frontal electrodes it is possible that an overall inter-hemispheric connectivity measure is too 

broad. In the present sample power spectral density gave no indication of specific frontal 

differences, but follow-up research should perhaps focus on more specific frontal networks. 
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Figure 5.4: Adjacency matrices and inter-hemispheric connectivity 

Left column show the median pairwise WPLI for the neurotypical group across all 64 electrodes. The second 

column shows the same matrices for the autism group. The third column shows the group-wise comparisons. The 

right panel show boxplots for the inter-hemispheric connectivity. Interactive high resolution matrices can be 

viewed on: http://bit.ly/2jPq7sw. The group-wise median differences are also displayed there.   
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5.3.3 Graph	analysis	

Graph analysis of common measures such as path length, betweenness centrality, modularity 

and small-worldness revealed no clear group-wise differences in any of the frequency bands 

(Figure 5.5). Similar to the analysis of the overall connectivity pattern it is likely that any 

potential group differences are masked by the fact that the present measures reflect a global 

(e.g. whole-brain) network property. At the same time the present sample might be too small to 

detect changes on such a broad summary measure.  
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Figure 5.5: Graph theory metrics.  

Lines in each plot represent the group mean at that specific cost. Cost indicates the level above the minimal 

spanning tree (e.g. a cost of 0.1 reflect the MST + the top 10% of all connections). The shaded areas around the 

lines indicate the standard error of the mean for the respective group. High resolution plots can be viewed on: 

http://bit.ly/2jPq7sw     
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5.4 Results:	CRAE	Data	

All analyses conducted on the Cambridge ARC dataset were repeated for the data obtained from 

the Centre for Research on Autism and Education.  

5.4.1 Asymmetry	analysis	

Similar	to	the	Cambridge	data,	the	asymmetry	analysis	revealed	no	effects	that	survived	

multiple	comparisons.	Interestingly,	the	mean	difference	even	seemed	to	be	in	opposite	

direction	as	the	discovery	data.	
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Figure 5.6: Median power and group-comparison for each frequency band 

The left column shows the group median power spectral density for each frequency in the neurotypical group. The 

middle column shows the same information from the autism group. The right column shows the frontal asymmetry 

index (FAI) for each group as well as the t-statistic and p-value of the permutation test comparing each group. 
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5.4.2 Overall	connectivity	analysis	

Analysis	of	 the	overall	 connectivity	pattern	 revealed	a	number	of	electrode	pairs	with	

significantly	 altered	 connectivity	 between	 them.	 Although	 these	 electrodes	 do	 not	

perfectly	overlap	a	pattern	 is	 emerging	of	mainly	disconnected	 frontal	 electrode	 sites.	

(Figure	5.7)	

	
Figure 5.7: Adjacency matrices and inter-hemispheric connectivity 

Left column show the median pairwise WPLI for the neurotypical group across all 64 electrodes. The second 

column shows the same matrices for the autism group. The third column shows the group-wise comparisons that 

survive FDR correction.  
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5.4.3 Graph	theory	analysis	

Analysis	of	graph	theoretical	properties	revealed	no	significant	differences	between	the	

two	groups	(Figure	5.8).	

 
Figure 5.8: Graph theory metrics.  

Lines in each plot represent the group mean at that specific cost. Cost indicates the level above the minimal 

spanning tree (e.g. a cost of 0.1 reflect the MST + the top 10% of all connections). The shaded areas around the 

lines indicate the standard error of the mean for the respective group. 
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5.5 Discussion 

Functional interpretations of the asymmetry indices include predictions and inferences 

regarding psychopathology and dispositional styles, often focusing on the link between 

personality traits, social behaviour and resting baseline asymmetry (Harmon-Jones, Gable, & 

Peterson, 2010). Most research on asymmetry of spectral density in autism tends to find effects 

in alpha and beta frequency bandwidths. In the present pilot study we chose to extend our 

analyses to all five frequency bands given the somewhat heterogeneous findings in autism 

(Wang et al., 2013), and the exploratory nature of the present study. Although in the CRAE 

dataset there seemed to be two nominally significant differences in frontal asymmetry in the 

beta and gamma bands these did not survive multiple comparison correction across the five 

bands nor did they replicate in the Cambridge dataset. In fact the median frontal asymmetry 

indices for those two frequency bands showed opposite differences in the two datasets. This is 

most likely caused by three issues.  

 

First, the sample sizes for both datasets is at present too small to draw any definitive 

conclusions. Group-wise figures presented in this chapter represent medians of each group as 

there was considerable variability in both the neurotypical as well as the autism group. As data 

collection at both sites is still ongoing (and a third site might be added in the near future), this 

is hopefully an issue that will be resolved in the long-term. It should be noted that previous 

studies on resting-state EEG asymmetry have had large variation in samples sizes, ranging from 

an upper bound of 463 individuals with a diagnosis to a lower bound of 9 (Billeci et al., 2013). 

Some of the heterogeneity in published literature might indeed also be attributable to power 

issues. 
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Secondly, and related to the former issue, the present datasets are too small to effectively 

account for potential confounds such as age, biological sex and IQ. As alluded to in the 

introduction of this chapter these factors are known to influence EEG asymmetry patterns as 

well as modulate effects within autism (Lai et al., 2015). A more exhaustive dataset would 

allow us to include those factors as potential mediators or covariates.  

 

Thirdly, the current frontal asymmetry indices are based on the ratio between a cluster of frontal 

electrodes that all represent specific locations. In the literature there is considerable 

heterogeneity in terms of electrodes included in these ratios (Wang et al., 2013). Furthermore, 

when individual connections were pairwise compared between the two groups there were a 

range of connections that survived FDR correction in both datasets and across frequency bands 

(Figures 5.4 and 5.7). Again, due to sample size constraints no definitive conclusions can be 

drawn from that at this time, but it is noteworthy to point out that most of the connections that 

differed between the two groups were inter-hemispheric frontal connections. If we assume that 

balance in spectral density asymmetry is sustained by functional connections operating in the 

same frequency band it might be interesting to focus on the asymmetry of those connections 

specifically. Based on the present data this would constitute a certain circularity in the analysis 

as the selection of electrodes would be based on the same data and at present there might not 

even be enough consistency in which electrodes pass FDR correction across datasets. However, 

with the possible addition of a third site we plan to compute frontal spectral density asymmetries 

based on frontal electrodes that show a consistent connectivity difference across the two 

datasets described here.  
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As a novel extension the present study also explored the use of graph theoretical measures to 

assess potential whole-brain differences in functional connectivity. Across densities, 

bandwidths and datasets there were no significant differences in any of the main graph measures 

explored here. Again, sample size and sample heterogeneity might be factors contributing to 

this lack of differences. However, it is also very well possible that the complex and various 

differences that might exists in the functional connectome between individuals with autism and 

neurotypical individuals is not well captured by measures that describe overall brain 

connectivity in a singular vector. All research in autism connectivity, whether using functional 

magnetic resonance imaging (Vissers et al., 2012) or EEG (Wang et al., 2013), indicates a 

strong heterogeneity in its findings at both regional brain levels as well as in overall brain 

organization.  

 

Lastly, there is of course another possibility. Assuming Occam’s Razor of the most 

parsimonious explanation being the most likely, it might very well be the case that there simply 

are little to no differences in functional connectivity and asymmetry between individuals with 

autism and neurotypical individuals. Although literature would suggest that some differences 

should be expected there is a real possibility that this literature suffers to some extend from the 

well known publication bias of positive findings leading to potential type-I-errors (Sterling, 

1959). Again the sample size of the present data does not allow any definitive conclusions. 

Hopefully the addition of more data and a third data collection site will add to the strength of 

the present findings, allowing for a more definitive conclusion. 
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Chapter	6 Effects	 of	 intranasal	 oxytocin	 on	

functional	connectivity	in	women	

6.1 Introduction		

Oxytocin is a neuropeptide hormone involved in sexual intercourse, childbirth and parent-infant 

bonding, affecting reward processing, anxiety and social salience (Bethlehem et al., 2014). 

Oxytocin is not necessarily a ‘pro-social’ hormone, as effects are highly context- and person-

dependent (Bartz, Zaki, Bolger, & Ochsner, 2011; Bethlehem et al., 2014). Oxytocin has 

received substantial interest as a potential treatment for psychiatric conditions such as autism 

(Meyer-Lindenberg, 2008), although clinical trials show modest effects (Watanabe et al., 2013, 

2015; Yatawara, Einfeld, Hickie, Davenport, & Guastella, 2015). Given the marked 

heterogeneity in autism (Lai, Lombardo, Chakrabarti, & Baron-Cohen, 2013) it is possible that 

the benefits of oxytocin may vary substantially between individuals. For example, on-average 

intranasal oxytocin improves eye contact during naturalistic social interaction, but the largest 

effects occur for individuals who typically make the least amount of eye contact (Auyeung et 

al., 2015). Thus, in evaluating oxytocin’s therapeutic potential, we must move towards a more 

precise understanding of how its effects may vary across individuals. 

 

We have theorized that the widespread effects of oxytocin on complex human social behaviour 

may be due to distributed influence at a neural circuit level (Bethlehem et al., 2013). Although 

oxytocin acts directly at a local level via the oxytocin receptor (OXTR), it can potentially affect 

widespread circuit-level dynamics via connections to areas that are densely populated with 



6.1	Introduction	 127	

	

	 Page	|	127	

OXTR. One way to test the hypothesis that oxytocin affects circuit-level organization in the 

human brain is through oxytocin-administration studies within the context of in-vivo 

measurement of intrinsic functional brain organization (i.e. connectome or brain network 

organization) with resting state fMRI (rsfMRI) data. While there are a number of existing 

neuroimaging oxytocin-administration studies (Bethlehem et al., 2013), most have relied on 

task-based fMRI paradigms and largely focus on males. In the oxytocin literature there is a 

prominent bias towards males, and one that affects much of neuroscience and medical research 

(Beery & Zucker, 2011). Sex differences in the OXTR system are documented (Dumais & 

Veenema, 2015; Ebner et al., 2016; Kramer, Cushing, Carter, Wu, & Ottinger, 2004), 

suggesting that findings in males may not generalize to females. Furthermore, task-based fMRI 

has often shown opposite findings in males and females namely in terms of amygdala activation 

(Domes et al., 2010; Lischke et al., 2012).  

 

Because oxytocin is viewed as a potential pharmacotherapy for conditions like autism, and 

given that sex may play a large moderating roles in drug effectiveness (Zagni, Simoni, & 

Colombo, 2016), it is essential to begin examining how oxytocin operates in the female brain. 

In addition, although there is a strong male bias in autism diagnoses (Baron-Cohen et al., 2011) 

there is reason to believe that females are strongly underrepresented that may have increased 

the male-biased understanding of autism (Lai et al., 2015). Given the lack of prior literature on 

oxytocin’s network level effects on brain connectivity in women we chose to use a robust data-

driven (hypothesis-free) approach to assess potential connectivity differences. 

 

The majority of studies investigating how oxytocin affects the human brain use task-based 

fMRI paradigms. While task-based studies are important for targeting specific psychological 
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processes, examination of oxytocin-related effects may, as a result, be neuroanatomically 

constrained to specific circuits related to those tasks. Examination of functional connectivity 

using rsfMRI data allows for task-independent assessment of oxytocin’s effect on intrinsic 

functional brain organization across the entire connectome. Furthermore, the small number of 

existing rsfMRI oxytocin-administration studies (Ebner et al., 2016; Koch et al., 2016; Sripada 

et al., 2013; Watanabe et al., 2015) use seed-based analyses that do not allow for hypothesis-

free examination across the connectome. Thus, a more unconstrained approach could provide 

novel insights into oxytocin-related effects on connectome organization, especially when little 

to no prior hypothesis can be derived from existing literature.  

 

Here we use independent components analysis (ICA) to examine how connectivity between-

circuits (i.e. between-component connectivity) (Smith et al., 2013, 2015) differs across 

oxytocin and placebo. To facilitate our understanding of oxytocin-effects on connectivity in the 

human brain we analysed two publicly available post-mortem human brain gene expression 

datasets to answer the question of how the oxytocin receptor (OXTR) is expressed across a 

variety of subcortical and cortical areas in the human brain. To date, information on OXTR 

expression has largely been confined to animal studies and translation from that is problematic 

(Young, 2015). We predicted that oxytocin would have largest impact on connectivity between 

the densely OXTR-populated striatum and cortical circuits. Furthermore, we predicted that 

impact of oxytocin on connectivity would vary as a function of variation in autistic traits, with 

larger effects for individuals with higher levels of autistic traits (Auyeung et al., 2015). 
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6.2 Methods	

6.2.1 Participants	

All research was conducted in accordance with the Declaration of Helsinki and the study had 

received ethical approval from the NHS Research Ethics Service (NRES Committee East of 

England – Cambridge Central; REC reference number 14/EE/0202). This study was exempt 

from clinical trials status by the UK Medicines and Healthcare Regulatory Agency (MHRA). 

 

In a double-blind randomized placebo-controlled cross-over design, 26 women (age: 23.6±4.6 

years, range [21-50]) received an oxytocin nasal spray (24 IU, 40.32 µg, Syntocinon-spray; 

Novartis, Switzerland, pump-actuated) in one session and placebo (the same solution except for 

the active oxytocin) in the other session in a counterbalanced order. After instruction by a 

trained medical doctor the sprays were self-administered 40 minutes prior (Born et al., 2002) 

to undergoing resting-state fMRI imaging. Participants confirmed no nasal congestion or 

obstruction on the day of testing. This timing and dosage are by far the most commonly used 

in oxytocin administration studies to date (E. MacDonald et al., 2011). Sessions were separated 

by at least one week (to ensure full wash-out from the first administration) when participants 

were on hormonal contraceptive (19/26). When participants were not on hormonal 

contraceptive (7/26) both sessions took place in the early follicular phase of the menstrual cycle 

to ensure similar hormone levels between sessions.  

 

Exclusion criteria included pregnancy; smoking; a diagnosis of bipolar, obsessive-compulsive, 

panic or psychotic disorder; use of any psychoactive medication within one year prior to the 

study; substance dependence; epilepsy; and being post-menopausal. These criteria were 
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assessed by self-report and participants’ general practitioners were given the full protocol prior 

to participation and asked to notify the research term if they thought there was any reason for 

exclusion. More details on the testing procedure and sample are provided in the supplementary 

information and supplementary table (D.1). Briefly; all subjects completed the Wechsler 

Abbreviated Scale of Intelligence (Wechsler, 1999) (mean 115.3±13.19), Empathy Quotient 

(EQ) (Baron-Cohen & Wheelwright, 2004) (mean 55.6±14.53)) and Autism Quotient (AQ) 

(Baron-Cohen et al., 2001) (mean 14.4±7.32) questionnaires prior to the first scanning session. 

None of the participants had received a formal diagnosis of autism nor did they give any 

indication that they may have gone undiagnosed. We acknowledge no assessment was done to 

formally rule this out. They were instructed to refrain from alcohol or caffeine on the day of 

testing and from food and drink 2 hours prior to testing (except for water).  

 

To understand whether oxytocin or some other placebo-related effect that explains any drug-

related differences in connectivity, we utilized an independent dataset of age-matched typical 

females in order to ascertain what are the normative baseline between-component connectivity 

effects. Our logic here is that if normative connectivity looks similar to patterns we see during 

placebo, then we can reasonably infer that oxytocin is the primary reason for the induced change 

in connectivity and not due to some placebo-related change and no effect of oxytocin. This 

independent dataset consisted of 50 females whom were slightly older but did not statistically 

differ in age  (mean age 31.6±12.2, Wilcoxon rank-sum test: W = 764.5, p = 0.117) collected 

on the same scanner and which used a similar multi-echo EPI sequence for data collection (see 

Morris et al, 2016 for full details). 
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6.2.2 Image	acquisition	and	pre-processing	

MRI scanning was done on a 3T Siemens MAGNETOM Tim Trio MRI scanner at the Wolfson 

Brain Imaging Centre in Cambridge, UK. For the oxytocin-dataset, a total of 270 resting-state 

functional volumes (eyes-open, with fixation cross) were acquired with a multi-echo EPI 

(Kundu, Inati, Evans, Luh, & Bandettini, 2012) sequence with online reconstruction (repetition 

time (TR), 2300 ms; field-of-view (FOV), 240 mm; 33 oblique slices, alternating slice 

acquisition, slice thickness 3.8 mm, 11% slice gap; 3 echoes at TE = 12, 29, and 46 ms, 

GRAPPA acceleration factor 2, BW=2368 Hz/pixel, flip angle, 80°). Anatomical images were 

acquired using a T1-weighted magnetization prepared rapid gradient echo (MPRAGE) 

sequence (TR, 2250 ms; TI, 900 ms; TE, 2.98 ms; flip angle, 9°; matrix 256×256×256, FOV 

256 mm). For the independent rsfMRI dataset on age-matched females, data was acquired on 

the same 3T scanner and with a multi-echo EPI sequence that was similar to the oxytocin-

dataset (TR, 2470 ms; FOV, 240 mm; 32 oblique slices, alternating slice acquisition, slice 

thickness 3.75 mm, 10% slice gap; 4 echoes at TE = 12, 28, 44, and 60 ms, GRAPPA 

acceleration factor 3, BW=1698 Hz/pixel, flip angle, 78°). Multi-echo functional images were 

pre-processed and denoised using the AFNI integrated multi-echo independent component 

analysis (ME-ICA, meica.py v3, beta1; http://afni.nimh.nih.gov) pipeline (Kundu et al., 2013), 

details on this procedure are outlined in the supplementary materials (Appendix D). 

6.2.3 Gene	expression	analysis	

To better characterize subcortical and cortical brain regions in terms of OXTR gene expression, 

we analyzed RNAseq data in the Allen Institute BrainSpan atlas (http://www.brainspan.org) 

and the Genotype-Tissue Expression (GTEx) consortium dataset 

(http://www.gtexportal.org/home/). The BrainSpan atlas covers a number of cortical areas the 
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might provide insights into potential cortical targets of oxytocin expression, whereas the GTEx 

dataset does not have many regionally-specific areas of the cortex (only BA9 and BA24) and 

mostly includes more detailed information on several subcortical brain regions. In these 

analyses we used all postnatal (birth to 79 yrs.) samples in each dataset, stratified by biological 

sex. OXTR was isolated and plots were produced to descriptively indicate expression levels 

across brain regions. Expression levels in both datasets were summarized as Reads Per Kilobase 

of transcript per Million mapped reads (RPKM). Full details for the BrainSpan and GTEx 

procedures are available in their white papers: http://bit.ly/2dqRF47 and http://bit.ly/2e8o1W2 

respectively. To examine whether OXTR expression levels were significantly elevated in each 

brain region, we compared expression levels against zero and, as a more conservative test, 

against another tissue from GTEx where we would not expect OXTR to be expressed (i.e. skin). 

These tests were carried out using permutation t-tests (1000 permutations) implemented with 

the perm.t.test function in R.  

6.2.4 Group	Independent	Components	Analysis	and	Dual	Regression	

To assess large-scale intrinsic functional organization of the brain we first utilized the 

unsupervised data-driven method of independent component analysis (ICA) to conduct a group-

ICA followed by a dual regression to back-project spatial maps and individual time series for 

each component and subject. Both group-ICA and dual regression were implemented with 

FSL’s MELODIC and Dual Regression tools (www.fmrib.ox.ac.uk/fsl). For group-ICA, we 

constrained the dimensionality estimate to 30, as in most cases with low-dimensional ICA, the 

number of meaningful components can be anywhere from 10-30 (S. M. Smith et al., 2013).  
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Some components were localized primarily to white matter and although likely may be driven 

by true BOLD-related signal (due to high ME-ICA kappa weighting), were not considered in 

any further analyses. 22 out of 30 components were manually classified as primarily localized 

to grey matter and were clearly not noise-driven components. Correlation matrices were 

constructed for all component pairs, these were assessed for significance using paired sampled 

t-tests and resulting p-values were corrected for multiple comparisons using Bonferroni 

correction at a family-wise error rate of 5%. Difference scores were computed for pairs that 

survived FWE correction on the Fisher z-transformed correlation scores (Steiger, 1980) and 

entered into robust regression (for insensitivity to outliers) (Wager, Keller, Lacey, & Jonides, 

2005) with AQ scores. For more details see the supplementary information.  

6.2.5 Large-Scale	Reverse	Inference	with	NeuroSynth	

To better characterize the components showing an oxytocin-related effect on connectivity we 

used the decoder function in NeuroSynth (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 

2011) to compare the whole-brain component maps with large-scale automated meta-analysis 

maps within NeuroSynth. The top 100 terms (excluding terms for brain regions) ranked by the 

correlation strength between the component map and the meta-analytic map were visualized as 

a word cloud using the wordcloud library in R, with the size of the font scaled by correlation 

strength. 

6.3 Results	

6.3.1 Oxytocin	Receptor	(OXTR)	Gene	Expression		

Expression profiles of OXTR in women derived from the GTEx dataset reveal broad expression 

across subcortical regions, but with notable enrichments particularly in nucleus accumbens, 
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substantia nigra, and the hypothalamus (Figure 6.1). All regions showed OXTR expression that 

was significantly above 0 and critically, was also significantly stronger than expression in a 

tissue we would expect to show little expression (i.e. skin) (Table D.2). Cortical regions from 

the BrainSpan dataset also exhibit significant OXTR expression (above 0 and when compared 

to skin; Table D.2), albeit at much more modest levels than some subcortical regions. This 

modest degree of OXTR expression may be particularly relevant given studies that show broad 

oxytocin-related effects on complex human social behaviour, social communication, and social 

cognition that affects distributed cortical regions (e.g., superior temporal gyrus, medial 

prefrontal cortex (MFC)). However, there is a lack of specificity apparent in OXTR expression 

in cortex, as most regions show similar levels of expression.  

 

As a whole, these data indicate that oxytocin could have potent direct effects on OXTR within 

subcortical circuitry, particularly areas of the striatum and midbrain, but may also have similar 

OXTR-driven effects to a lesser extent across most cortical areas where OXTR expression is 

modest. Given the lack of specificity within cortex, these data also support an approach for 

examining oxytocin-related effects on intrinsic functional connectivity that examines all 

between-networks connections, as all may be susceptible to plausible effects. However, given 

the enrichment particularly in striatal and midbrain regions, it is likely that oxytocin-related 

effects on connectivity may particularly affect connections between cortex and the densely 

OXTR-populated striatum and midbrain. We also carried out exploratory analyses on gender 

differences in OXTR expression and these are included in the supplementary information 

(Figure D.1). 
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Figure 6.1: Oxytocin receptor (OXTR) gene expression in the female human brain.   

This figure illustrates OXTR gene expression measured via RNAseq in BrainSpan (http://www.brainspan.org) and 

GTEx (http://www.gtexportal.org/home/) datasets.  Panel A shows expression for all subcortical regions available 

in the GTEx dataset in women. All brain regions show significant expression of OXTR above 0 and compared to 

expression in non-brain (skin) tissue. On-average, OXTR expression is particularly enriched in ventral striatum 

(Nucleus Accumbens), substantia nigra, and hypothalamus. Panel B shows expression for all cortical areas and the 

thalamus available in the BrainSpan atlas in women. All areas also show significant, albeit modest, levels of OXTR 

expression compared to 0 and non-brain (skin) tissue. 

6.3.2 Oxytocin-Related	Between-Component	Connectivity	Differences		

Analyses of all pairwise comparisons of between-component connectivity differences as a 

function of oxytocin administration revealed only one pair of components, IC11 and IC21 

(Figure 6.2, panels A and B), whose connectivity was substantially affected by oxytocin (t(24) 

= 6.99, p = 3.10e-7, effect size d = 1.39, 95% CI [0.96 to 1.86]) and survived after Bonferroni 

correction (FWE p<0.05) for multiple comparisons. The full pairwise correlation matrix is 

provided in Supplementary Figure D.2. As shown in Fig 6.2E, all but 2 participants (92%; 

23/25) showed evidence of a non-zero oxytocin-related boost in connectivity over the placebo 

condition (Figure 6.2, panel E). Within the placebo condition alone, connectivity was not 
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different from 0 (t(24) = -0.86, p = 0.39). However, within the oxytocin condition, connectivity 

was substantially elevated above 0 (t(24) = 6.22, p = 1.95e-6).  

 

The IC11 component comprised regions in primary auditory cortex, middle and posterior 

divisions of the insula, superior temporal gyrus, posterior superior temporal sulcus, middle and 

posterior cingulate cortex, ventromedial prefrontal cortex, amygdala, and superior parietal lobe. 

These brain regions overlap with areas typically considered important in processes such as 

language, social-communication, self-referential and social cognition, pain, and emotion 

(Amodio & Frith, 2006; Friederici, 2012; Hickok & Poeppel, 2007; Wager et al., 2013; Yang, 

Rosenblau, Keifer, & Pelphrey, 2015). NeuroSynth decoding revealed that most of the terms 

with the highest correlation with IC11 were predominantly terms referring to pain-related, 

motor-related, or language/speech-related processes (Figure 6.2, panel C). The IC21 component 

was comprised entirely of subcortical regions such as the striatum, basal ganglia, amygdala, 

thalamus, midbrain, and brainstem. These regions, particularly the striatum, midbrain, and 

amygdala, are typically considered highly involved in reward and emotion-related processes 

(Haber & Knutson, 2010; Kober et al., 2008; Lindquist, Wager, Kober, Bliss-Moreau, & 

Barrett, 2012). This was again confirmed with NeuroSynth decoding showing a predominance 

of reward, motivation, and affective terms (Figure 6.2, panel D). 

 

Next, we examined whether individual differences in autistic traits accounted for variability in 

oxytocin-related effects on connectivity between these networks in an exploratory analysis. 

Given prior work suggesting that oxytocin may have its largest effect on individuals who show 

the most atypical social behaviour (Auyeung et al., 2015), we hypothesized that oxytocin may 

have the largest effects on connectivity in individuals with the highest degree of autistic traits. 
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Here we found evidence confirming this hypothesis, as oxytocin’s effect on between-

component connectivity appeared to increase with increased degree of autistic traits: r = 0.41, 

one-tailed p = 0.0351 (Figure 6.2, panel F). 
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Figure 6.2: Oxytocin-related enhancement of intrinsic functional connectivity. 
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Panel A shows the spatial map of component IC11. Voxels are coloured by Z-statistics indicating how well each 

voxel’s time series fits the component’s time series. Panel B shows the same information for component IC21. 

Panel C shows the top 100 terms associated with component IC11 based on NeuroSynth decoding and font size 

represents relative correlation strength of that term to the component. Panel D shows the same information for 

component IC21. Panel E shows connectivity between IC11 and IC21 for each subject during placebo or oxytocin 

administration. Dots represent individual subjects and the lines connect each individual’s data under placebo and 

oxytocin, with the positive slopes indicating an enhancement of connectivity after oxytocin administration.  

Underneath the individual-level data are boxplots that indicate the median, interquartile range, and outer fences. 

Interestingly, the two individuals who would be considered outliers in the placebo condition are the minority of 

individuals showing no enhancement of connectivity as a function of oxytocin. Panel F shows the relationship 

between oxytocin-related effects on connectivity and continuous variation in autistic traits as measured by the AQ. 

Panel G shows the between component connectivity of between comparable components of the normative dataset. 

Panel H shows the spatial correlation between the oxytocin data components and the two normative components 

that were selected. Panels I and J show the normative components spatial maps.  

	

Finally, we ran further analyses to aid the interpretation of such an effect. One interpretation 

could be that oxytocin is the primary driver of enhanced connectivity between these 

components. However, the alternative could be that oxytocin has no effect on connectivity, and 

that the placebo might somehow induce a decrease in connectivity between these components. 

To tease apart these different interpretations, we looked to an independent dataset of rsfMRI to 

ascertain what the normative connectivity strength is between these two components. If 

oxytocin was truly enhancing connectivity between these components, we would predict that 

connectivity between these components under normative conditions would be similar to those 

seen under placebo. That is, normative connectivity effects between these components should 

manifest similarly to placebo and on average show no difference from 0.  

 

We identified two components that were spatially nearly identical to the component pair we 

observed an oxytocin effect in; nIC4 and nIC21 (Figure 6.2I & 6.2J). Quantitatively confirming 

this similarity, we find very large correlations between the spatial component maps of the 

normative and oxytocin/placebo datasets (nIC4-IC11, r = 0.80; nIC21-IC21, r = 0.69, see Figure 
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6.2H). No other components showed any significant correlations (all r < 0.2). Similar to our 

placebo condition, this component-pair showed connectivity that was not significantly different 

from zero: t(49) = 1.23, p = 0.22 (Figure 6.2G). Furthermore, comparisons between normative 

connectivity and connectivity during placebo revealed no statistical difference (t-test with 

unequal variance assumed and degrees of freedom estimated using Satterthwaite’s 

approximation; t(64.6) = -1.507, p = 0.1370). This further clarifies our interpretation that it is 

indeed the oxytocin condition that drives enhancements in connectivity between these 

components and that the placebo condition is a good approximation of normative functional 

connectivity effects within this corticostriatal circuit. 

6.4 Discussion		

This is the first study to investigate how oxytocin affects intrinsic functional organization of 

the human brain at the level of between-network interactions. We discovered a specific 

corticostriatal network implicated in social-communicative, motivational, and affective 

processes that is significantly affected by oxytocin. Under oxytocin the connectivity between 

these two components was substantially elevated, on-average, and an oxytocin-related boost 

was observed in almost all participants. The fact that these corticostriatal connections are not 

particularly strong under normative conditions and with the administration of placebo, but 

become increasingly coordinated under oxytocin may be important for understanding how 

oxytocin influences cognition and behaviour.  

 

Future work is needed to examine oxytocin-related strengthening of connectivity between these 

circuits and its effect on specific cognitive and behavioural processes. For example, these 

corticostriatal connections under pain or social-communication processes may illuminate 
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important brain-behavior links that are affected by oxytocin. These results also illustrate how 

oxytocin is likely to extend beyond certain brain regions traditionally thought to be important 

(Meyer-Lindenberg et al., 2011). For example, previous neuroimaging studies in humans have 

largely focused on amygdala-related effects and to a lesser extent on striatal regions. The 

current study suggests oxytocin’s effects may extend well beyond the amygdala and striatum, 

and most importantly, may incorporate interactions between subcortical striatal regions with 

cortical areas.  

 

The degree to which oxytocin enhanced connectivity was also associated with continuous 

variation in autistic traits, such that those with the highest levels of autistic traits showed the 

largest oxytocin-related effect on connectivity. These results may point towards the idea that 

oxytocin may have varying impact on different subsets of individuals. Individuals with the 

highest levels of autistic traits seem to show the largest oxytocin-related connectivity boost. It 

will be important to extend these ideas into neuropsychiatric conditions such as autism 

Oxytocin is hypothesized to be of some potential value therapeutically for autism (Meyer-

Lindenberg et al., 2011). However, given the large degree of heterogeneity in autism (Lai, 

Lombardo, Chakrabarti, et al., 2013) and the knowledge that therapies may work well for some 

individuals and not others, it will be of the utmost importance to examine how oxytocin may or 

may not work well on specific subsets of affected individuals.  

 

Supporting the plausibility of oxytocin-related effects on connectivity between these circuits, 

we also showed evidence supporting the idea that many of the brain regions involved in both 

IC11 and IC21 maps show some degree of OXTR expression. For instance, it is well known 

from non-human animal work that the striatum and regions within the midbrain are highly 
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populated with oxytocin receptors (Insel & Shapiro, 1992; King, Walum, Inoue, Eyrich, & 

Young, 2015). We confirmed such findings with evidence from OXTR expression in the brain 

in human females and furthered a proof-of-concept evidence that oxytocin may leverage this 

enrichment in OXTR to influence neural circuits connected to the striatum. We also discovered 

that there are modest levels of OXTR expression throughout many cortical areas. Given the lack 

of cortical specificity for OXTR enrichment, it remains possible that the observed connectivity 

effects with rsfMRI may not necessarily be mediated by direct action of oxytocin on OXTR in 

specific cortical regions. Rather, oxytocin could exert such effects via other indirect routes, 

perhaps originating in striatal circuitry where there is high enrichment in OXTR or via other 

mechanisms of action (Bethlehem et al., 2013). Although expression patterns of OXTR were 

not specific to cortical regions it may be that more fine-grained spatial maps of OXTR might 

provide a clearer picture. For example, the development of a PET ligand could certainly further 

advance our understanding of OXTR distribution in-vivo in the human brain. 

 

This study has several novel elements that need to be highlighted. Specifically, this study 

focusses specifically on oxytocin-related resting-state effects in women. There are notable male 

biases throughout neuroscience and medical research and this bias may explain why studies 

looking at the effects of drugs tend to miss many adverse effects or show a lack of efficacy 

when applied to females (Beery & Zucker, 2011; McCarthy, Arnold, Ball, Blaustein, & De 

Vries, 2012). This bias can be observed in much of the prior work on oxytocin in humans as 

well, with some neuroimaging studies indicating potential differences in the oxytocin system 

between sexes (Domes et al., 2010; Ebner et al., 2016; Gao et al., 2016; Riem et al., 2012; 

Rilling et al., 2013). Part of this bias in oxytocin research might be explained by the higher risk 

of side-effects (e.g. lactation in mothers, abnormal uterine contractions and elevated blood 
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pressure), though the intranasal administration has proven to be a safe method of administration 

(E. MacDonald et al., 2011). There have been a few studies that assessed the effect of gender 

in oxytocin administration. For example, previous studies examining functional connectivity 

during tasks show enhanced connectivity in women but decreased connectivity in men (Riem 

et al., 2012; Wittfoth-Schardt et al., 2012). Although our study was not explicitly set to examine 

sex differences in the effects of oxytocin, future research should focus on how oxytocin may 

have different effects across males and females.  

 

Second, surpassing much of the existing neuroimaging work on oxytocin, our study is the first 

to take a whole-brain, unsupervised approach to examine connectivity between neural 

networks. The small number of studies examining in-vivo oxytocin-related changes to 

functional connectivity in humans utilized a seed-based connectivity approach. This approach 

elucidates effects of oxytocin on connectivity with the pre-selected seed region, but is limited 

by the a priori selection. As we have shown with the analysis of OXTR expression much of the 

prior work is not necessarily informed by this expression pattern. It partly lacks specificity for 

certain regions and the present data suggest that other brain regions, not traditionally reported 

in oxytocin administration literature, might also have OXTR expression that would make it a 

potential target for administration. Rather, prior work tends to be heavily directed to regions 

that are justified based on their role in psychological processes that are linked to oxytocin (e.g., 

amygdala). In our work, we have taken an unbiased approach to provide insight into oxytocin’s 

effect on corticostriatal connectivity. These circuits might not have been identified with an 

approach constrained by task-based activation or seed-based connectivity based on this task-

related activation.  
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The highlighted effect places emphasis on striatal interactions with cortical areas that are 

associated with pain processing. These results are interesting in light of work showing that 

oxytocin can not only act as an anxiolytic (Churchland & Winkielman, 2012; K. MacDonald & 

Feifel, 2014), but can also act as a painkiller (Rash, Aguirre-Camacho, & Campbell, 2013). It 

should be noted that the anxiolytic effect might not fully explain oxytocins effect on behaviour 

as benzodiazepines do not show a similar behavioural effect.  

 

To our knowledge, there is little neuroimaging work in females focusing on oxytocin and its 

influence on neural systems for pain processing, as most published work is exclusively on males 

and/or is focused on empathy for pain (Bos, Montoya, Hermans, Keysers, & van Honk, 2015; 

Paloyelis et al., 2016; Singer et al., 2008; Zunhammer, Geis, Busch, Greenlee, & Eichhammer, 

2015). Similar to oxytocin research, research on pain has traditionally been heavily male biased 

(Zagni et al., 2016), while women tend to suffer more from acute and chronic pain (Mogil, 

2012). Our results suggest that future work is needed in this area, particularly on oxytocin’s 

effect on pain and how such corticostriatal networks may be involved. In addition, areas 

identified by this data-driven approach show that key areas in the brains reward circuitry are 

modulated by oxytocin administration. It has been previously hypothesized that oxytocin exerts 

its effect on social salience and social cognition by modulating stress and reward processing 

(Bethlehem et al., 2014). The present study also highlights neural systems underlying these 

cognitive processes as key target for oxytocin administration. Further research into how 

oxytocin specifically modulates social reward processing might shed further light on its 

potential to more broadly modulate social cognition. 

 



6.4	Discussion	 145	

	

	 Page	|	145	

There are some caveats and limitations to keep in mind. First, the sample size is moderate and 

potentially provides low power to detect small effects. However, our multi-echo fMRI approach 

is a strength that could help counteract issues associated with statistical power. Multi-echo EPI 

acquisition and the ME-ICA denoising technique employed here is known to greatly enhance 

temporal signal-to-noise ratio (tSNR) and allow for enhanced ability to reduce false positives 

(Kundu et al., 2013). These enhancements tied to principled elimination of non-BOLD noise in 

rsfMRI could be beneficial for power because reduction in noise potentially increases 

observable effect sizes (Lombardo et al., 2016), and reduce effect size estimates for false 

positive effects.  

 

Future work collecting larger samples to replicate and extend these findings would be facilitated 

by characterizing individuals in continuous variation in autistic traits. Our study indicates that 

oxytocin-related effects tend to be stronger in individuals with more autistic traits. As noted in 

the points about sex and gender, future work should also examine whether similar or different 

effects are present in males. It would also be important to further extend this work in clinically 

diagnosed individuals with autism. Our exploratory analysis revealed a potential correlation 

with autistic traits that may suggest that oxytocin could facilitate corticostriatal connectivity in 

clinically diagnosed patients. If such a relationship extends into the clinically diagnosed 

population of the autism spectrum, we may expect to see that oxytocin provides the largest 

enhancements to the most affected individuals (Auyeung et al., 2015). This should however at 

this point be considered exploratory. 

 

Furthermore, there has been some debate in recent years about the extent to which oxytocin 

crosses the blood brain barrier (Leng & Ludwig, 2016). A recent study that assessed CSF and 



146	 Effects	of	intranasal	oxytocin	on	functional	connectivity	in	women	

	

	Page	|	146	

plasma concentrations after intranasal administration found elevated levels in plasma after 15 

minutes and a peak in CSF elevation at 75 minutes (Striepens et al., 2013). By far most studies 

have used the 24IU dose and timing of 40 minutes to show behavioural effects (Bethlehem et 

al., 2013; E. MacDonald et al., 2011; Meyer-Lindenberg et al., 2011). Yet, it is possible some 

behavioural effects might originate from peripheral elevation as opposed to a central effect 

(Leng & Ludwig, 2016). Nonetheless, a recent review on the issue suggests that the intranasal 

route is likely still the best candidate for administration and found no effects from intravenous 

administration (Quintana, Guastella, Westlye, & Andreassen, 2016). The relation between 

increased CSF oxytocin and timing of potential behavioural effect also remains unclear. The 

present study was not set out to determine the best dose or timing or to assess whether oxytocin 

could cross the blood-brain barrier. Unfortunately, there is currently no PET-ligand available 

to definitively assess the timing and central binding of intranasal oxytocin, though animal work 

on this is progressing (A. L. Smith, Barnhart, et al., 2013; A. L. Smith, Freeman, Voll, Young, 

& Goodman, 2013). Thus, in order to be able to compare the present findings to existing 

literature, we chose to use the same timing and dosage.  

 

Finally, underpowered studies are common amongst oxytocin administration studies (Walum, 

Waldman, & Young, 2016). The observed effect here between IC11 and IC21 is large. For the 

current sample size, the minimum effect size achieving 80% power at an alpha of 0.05 is d = 

0.6. An effect this low or lower was never observed in our bootstrapping analysis to estimate 

variability in the IC11-IC21 effect (see Supplemental Figure D.3). Therefore, we can reason 

that we had sufficient power to detect such an effect at the current sample size. As for other 

subtler effects, our report here is likely underpowered to detect such effects and much larger 

studies are likely needed to detect such smaller effects. Since this is the first work on the topic 
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of between-component connectivity in a female rsfMRI oxytocin administration study, we have 

provided effect sizes estimates for all IC comparisons to aid others in future power calculations 

(Supplementary Figure D.4). Each of the corresponding 22 IC maps can be viewed on and 

downloaded from NeuroVault (http://neurovault.org/collections/2154/). 

   

In conclusion, we have discovered that oxytocin enhances corticostriatal connectivity in 

women. These corticostriatal networks play roles in social-communicative, motivational, and 

affective processes and the results may be particularly important for understanding how 

oxytocin changes neurodynamics that may be relevant for many neuropsychiatric conditions 

with deficits in those domains and neural circuits. Future work examining these effects in males 

as well as clinically diagnosed samples will be important, as will be the examination of what 

subsets of individuals may benefit most from oxytocin-related changes in between-network 

connectivity. 
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Chapter	7 Altered	 functional	 connectivity	 after	

testosterone	administration	

7.1 Introduction	

The sex ratio in autism discussed earlier in this thesis has also been linked another hormone 

testosterone (T). Specifically prenatal testosterone has been shown to contribute to the risk of 

developing autism (Baron-Cohen et al., 2015;Baron-Cohen, 2002). Interestingly, early animal 

research showed that administration of T recovers loss of OXT receptors in areas important in 

social cognition (Arsenijevic & Tribollet, 1998; Bale & Dorsa, 1995). Furthermore, a previous 

extensive review of neuroendocrine influences on hormones behaviour has suggested that 

oxytocin and testosterone may have opposite effects on brain activation in the sense that they 

trigger a shift in cortical and sub-cortical processing in opposite directions (Bos et al., 2012). 

Thus, in contrast with the previous chapter we would expect T to have a potentially opposite 

effect in cortico-subcortical connectivity. As part of a larger study investigating the effects of 

T on social behaviour we also conducted a T administration and resting-state fMRI study in 

collaboration with the group of Professor Jack van Honk at the University of Cape Town.  

 

Testosterone has a well-established role in the reduction of fear and the promotion of 

dominance motivation and aggression in many species (Mazur & Booth, 1998; Wingfield, 

Hegner, Dufty  Jr., & Ball, 1990). In humans, the neural mechanisms underlying these effects 

are not yet clear, but it has been suggested that testosterone administration can decouple the 

orbitofrontal cortex from subcortical threat reactivity, leading to an increase in impulse-driven 
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goal-directed behaviour in response to threat (Terburg, Hooiveld, Aarts, Kenemans, & van 

Honk, 2011; Terburg & van Honk, 2013). Direct evidence for this hypothesis is however 

currently lacking as acute threat reactivity in the brain and associated goal-directed behaviour 

have not yet been studied in relation to testosterone administration. 

 

We do know that testosterone can reduce physiological fear responses in humans (Hermans et 

al., 2007; Hermans, Putman, Baas, Koppeschaar, & van Honk, 2006), and testosterone has 

repeatedly been linked to subcortical-cortical decoupling (Schutter & van Honk, 2004)  and 

decoupling of the OFC from the amygdala in particular (Bos et al., 2012; van Wingen et al., 

2010; Volman et al., 2016, 2011). Although the specific functions ascribed to the OFC are 

highly diverse (Stalnaker, Cooch, & Schoenbaum, 2015), it is generally accepted that its 

coupling with the amygdala serves to adjust behaviour based on the integration of top-down 

goal-directed action tendencies and bottom-up emotional reactivity (Kringelbach & Rolls, 

2004; Milad & Rauch, 2007; Murray & Izquierdo, 2007; Zald et al., 2014).  

 

We aimed to tap into this function by means of a functional magnetic resonance imaging (fMRI) 

experiment with dynamically changing situations of acute threat with goal-directed escape 

possibilities (Montoya, van Honk, Bos, & Terburg, 2015). We applied this experiment in a 

double-blind placebo-controlled testosterone administration design along with a measurement 

of baseline resting-state fMRI (RS-fMRI) connectivity. Using this design, we could investigate 

the hypothesis that testosterone’s decoupling of the OFC from the amygdala is directly involved 

in threat and escape anticipation. 



150	 Altered	functional	connectivity	after	testosterone	administration	

	

	Page	|	150	

7.2 Methods	

7.2.1 Participants		

Thirty healthy young women were recruited to participate in the experiment. Ethical approval 

was granted by the Human Research Ethics Committee of the University of Cape Town (UCT). 

Before being invited to participate, all women were screened with self-report questionnaires for 

present or previous psychiatric conditions. Additional exclusion criteria, also assessed by self-

report questionnaire, were: Current or recent use of psychotropic medications, use of hormonal 

contraceptives, pregnancy, abnormal menstrual cycle, any endocrine disorders, any other 

serious medical condition, left-handedness, habitual smoking, hearing problems, and colour 

blindness. Upon their arrival at the laboratory, all participants provided written informed 

consent before testing began. After recruitment, four participants were unable to complete their 

scans: One did not fit in the head coil, and three could not complete scans due to electricity 

failure at the scan facility. This left 26 participants who were included in the resting state 

analyses. A further four were excluded from the task-based statistical analyses: One due to 

excessive head movement in the scanner (40mm) during the task, one due to coil signal failure, 

and two due to headphone failure, meaning they did not hear the aversive noise. After these 8 

exclusions, the total sample consisted of 22 participants (age range 18-37, mean age 21.3, 

SD=4.4), with 11 in each administration order (placebo in first session, or testosterone in first 

session). Only women were considered as participants because the parameters (quantity and 

time course) for inducing neurophysiological effects after a single sublingual administration of 

0.5 mg of testosterone are known in women, whereas these parameters are not known in men 

(Tuiten et al., 2000). Each participant was paid ZAR250 for their participation. 
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7.2.2 Drug	administration	

We followed the procedure first reported by Tuiten et al (2000), which involves the sublingual 

administration of 0.5 mg of testosterone with a hydroxypropyl-β-cyclodextrin carrier 

(manufactured by Laboswiss AG, Davos, Switzerland) to healthy young women. Placebo 

samples were similar except for the omission of testosterone. This is a well-established single 

dose testosterone administration procedure that has been widely used for nearly two decades 

and has many times shown to generate behavioural effects in young women (Bos et al., 2012; 

van Honk et al., 2014). For the dosage chosen, no side effects have been reported in this or 

other studies to date. 

7.2.3 Procedure/experimental	design	

Participants were tested on two separate days. The first and second session were separated by 

at least 48 hours to ensure full wash-out. Both testing days fell within the follicular phase of the 

participants’ menstrual cycles to ensure low and stable basal levels of sex hormones (e.g. 

progesterone, luteinizing hormone, and follicle stimulating hormone). On both occasions, they 

arrived at the lab to receive the drug or placebo administration in the morning. Participants were 

instructed not to participate in any activity that could cause excessive fluctuations in hormone 

production, such as sports games, exams, or sexual activity. Four hours after administration 

they returned to the lab to undergo magnetic resonance imaging (MRI). This experiment was 

part of a larger study and all participants participated in two other fMRI tasks, not reported in 

this paper. 
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7.2.4 Threat	escape	task	(TET)	

We used an active escape paradigm that has been validated in previous pharmaco-fMRI 

research (Montoya et al., 2015). The task invokes different stages of threat imminence using 

visual images that approached (increase in size) the participant, culminating in a highly aversive 

noise (AN; a 1-second ~110 dB female scream), see Figure 7.1. The proximity of the threat, 

from furthest to nearest, can be distant (easily escapable), imminent (with effort escapable at 

chance level), or inescapable.  

 

Each condition has a matched safe condition without AN presentation, which is distinguishable 

by a different visual stimulus. In all conditions, except for the inescapable condition, the 

participant can avoid AN presentation by pressing a button in time to prevent the image from 

reaching full-size. The speed of the approaching threat is controlled based on each participant’s 

baseline reaction times as assessed in a practice session, and is updated based on performance 

during the experiment (see below). This allows for all participants, regardless of general 

reaction time speed, to escape from the imminent threat at the same probability, i.e. chance-

level performance, resulting in a reliable 50% of these trials with actual AN presentation and 

thus a uniform level of threat across participants. Furthermore, this design allows for 

comparison of not only safe and threatening conditions, but also between proximity and 

escapability of threat. Finally, after the participant’s scan session they indicated their 

consciously experienced level of fear in each of the six task conditions on a Likert scale from 

1 (“not afraid at all”) to 7 (“very afraid”). 
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Figure 7.1: Outline of the threat escape task.  

Participants are repeatedly attacked by rapidly approaching pictures. Participants can escape by pressing a button, 

but when they fail to do so they will be presented with a highly aversive noise (AN). The pictures are manipulated 

to be distant-escapable, imminent (escapable at chance-level) or inescapable, and all conditions are compared with 

an equivalent safe-context control condition involving the same procedure but without the threat of AN exposure. 

7.2.5 Assessment	of	mood	

In both sessions, before scanning, the participants completed the profile of mood states 2nd 

edition (POMS-II) to assess baseline mood differences due to drug administration. The POMS-

II is a 65-item questionnaire that indexes consciously experienced anger, tension/anxiety, 

depression, vigour, confusion and friendliness, as well as a combined total mood score, using a 

5-point Likert scale (Heuchert & McNair, 2012). 
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7.2.6 2D:4D	measurement	

Following evidence that prenatal testosterone exposure, as indexed by second-to-fourth digit 

ratio (2D:4D), drives the effect of testosterone on conscious but not reactive behaviour later in 

life (Terburg et al, 2013b), we also included this metric to our administration study. On one of 

their testing days, each participant’s right hand was scanned on a flatbed scanner, which images 

allow for accurate measurement of the 2D:4D ratio. Digit lengths were measured in Adobe 

Photoshop CS5 with the ruler tool from medial finger crease to middle of fingertip (Breedlove, 

2010). 

7.2.7 fMRI	acquisition	

All scans were obtained using a 3 Tesla Magnetom Allegra Siemens dedicated head MRI 

scanner (Siemens Medical Systems GmBH, Erlangen, Germany) with a four-channel phased 

array head coil, at the Cape Universities Brain Imaging Centre. Whole brain T2* weighted 2D-

Echo Planar Imaging (EPI) functional volumes were acquired with 36 ascending axial slices. 

The following parameters were used: EPI factor=64, TR/TE: 2s/27 ms, FA=70°, FOV (anterior-

posterior, inferior-superior, left-right): 64*64*36 slices, voxel size: 3.5 x 3.5 x 4mm. Five 

volumes from start of the task were discarded to allow MR signal to stabilize, and 438 usable 

functional volumes were acquired. A T1-weighted high resolution structural scan 

(magnetization-prepared rapid gradient echo; MPRAGE) was obtained once for each 

participant using the following parameters: TR/TE: 2.53s/6.6ms, flip angle 7°, FOV 

256*256*128mm, voxel size: 1 x 1 x 1.33mm, volume acquisition time: 8 min 33s. 

To investigate whether the effect of testosterone on OFC coupling is specific to threat 

processing or context independent, this study also included a resting-state fMRI session. On the 

same scanner and during the same session a total of 298 functional volumes were obtained 
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using a standard interleaved EPI sequence using a 64*64*29 FOV, a flip angle of 70°, a TR of 

1.6s, a TE of 27ms, and a voxel size of 3.75 x 3.75 x 5mm. During this 10-minute scan 

participants were instructed to remain awake and to try and clear their minds while looking at 

a fixation cross. 

7.2.8 TET	analysis	

7.2.8.1 Preprocessing	

MR scans were analysed using SPM8 (Wellcome Department of Imaging Neuroscience, 

London, UK). Pre-processing included; slice-time correction, motion correction of the 6 motion 

parameters and the sum of squared difference minimization, volume realignment to the middle 

volume and AC-PC realignment to improve co-registration. Functional and structural volumes 

were co-registered and subsequently normalized to Montreal Neurological Institute (MNI) 

space using unified segmentation procedure (Ashburner and Friston, 2005) and resampled into 

2mm isotropic voxels using 4th degree B-spline interpolation. Finally, all images were 

smoothed using an 8mm FWHM Gaussian kernel. 

 

7.2.8.2 Functional	activation	analysis	

The effects of testosterone on brain activity related to threat anticipation were investigated 

within general linear models (GLM). The task was designed to measure anticipatory BOLD 

responses to passively undergo, or actively escape from, AN exposure. Therefore, trials without 

actual attacks (12 trials for each condition) were of main interest, whereas trials with attacks (3 

trials for each condition excluding safe/inescapable) were treated as separate variables in the 

model, which ensures that the effects of motion related artefacts due to button-presses and AN 
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presentation do not affect our measure of interest. Thereto, in the first-level GLM for each test-

session, we used twelve regressors for our trials of interest: Six for the trial-onsets (box-car 

function for stimulus-duration, 3-6s), and six for the trial-offsets (delta function). Trial-offset 

regressors were included based on a previous study into threat-offset effects (Klumpers et al., 

2010) but considered of no-interest for the current study. Furthermore, ten other nuisance 

regressors were defined: Five for the trial-onsets for stimuli that would attack, four for the 

attack-onset (box-car function for attack-duration), and one for the AN-onset (box-car function 

for AN-duration, 1s). 

 

These regressors were all convolved with the hemodynamic response function as implemented 

in the SPM8 software. In addition, realignment parameters and a discrete cosine transform high-

pass filter with a 1/128Hz cut-off frequency were added to the model to reduce variance due to 

nuisance factors such as movement and drifts in the signal. Thus, in total twenty-nine regressors 

were entered in the first level statistical analysis. For each subject, and session, we computed 

contrast maps for onset of distant-escapable, imminent-escapable and inescapable threat and 

safe cues versus baseline. 

 

For the second level analysis, these contrast maps were entered in a full-factorial 2 x 2 x 3 

ANOVA design with drug (testosterone and placebo), condition (threat and safe) and distance 

(distant-escapable, imminent-escapable, inescapable) as within-subject factors. To evaluate our 

hypotheses within this GLM we first tested for threat related (de)activations in each distance 

condition (e.g. Inescapable[Threat < > Safe], etc.). We next tested the two crucial comparisons, 

which are (de)activations in anticipation of escapable versus inescapable threat (i.e. 

(Distant[Threat > Safe] + Imminent[Threat > Safe]) / 2 < > Inescapable[Threat > Safe]), and 
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(de)activations in anticipation of high versus low threat (i.e. (Imminent[Threat > Safe] + 

Inescapable[Threat > Safe]) / 2 < > Distant[Threat > Safe]). Finally, we compared 

(de)activations between all combinations of distances (e.g. Distant[Threat > Safe] < > 

Inescapable[Threat > Safe], etc.). This three-step approach was used for general task effects as 

well as for testosterone administration effects. 

 

To identify brain (de)activation patterns we first applied whole-brain FWE-correction with a 

cluster-wise threshold of p<.05 and cluster-defining threshold p<.001. Next we aimed to 

identify anatomically specific effects in the OFC and subcortical threat network by applying 

FWE-correction for the region of interest (ROI) volume with a voxel-wise threshold of p<.05. 

The ROIs consisted of a bilateral midbrain mask based on the TD Lobes atlas from the WFU 

Pickatlas Toolbox implemented in SPM (Maldjian et al, 2003), a bilateral amygdala mask 

(Amunts et al., 2005) taken from the anatomy toolbox as implemented in SPM8 (Eickhoff et 

al., 2005), a bilateral hypothalamus mask created by defining an 8mm sphere around the central 

coordinate (MNI coordinate: x=0, y=2, z=13) of hypothalamus subregions as described by 

Baroncini and colleagues and Terburg et al. (Baroncini et al., 2012; Terburg & van Honk, 2013), 

and a bilateral OFC mask including the rectus and orbital parts of the superior, medial and 

middle frontal gyri as defined in the AAL template (Tzourio-Mazoyer et al., 2002). See Fig. 2 

for a visualisation of these ROIs. 

7.2.8.3 Functional	connectivity	analysis	

Psycho-Physiological Interaction (PPI) analysis was performed to determine the functional 

connectivity of the OFC with other brain regions using the PPI module implemented in SPM8. 

In short, a volume of interest (VOI) was created using a 6mm sphere around the peak-voxel 
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coordinate of OFC activation identified in the functional activation analysis. For each 

participant time-course (first-eigenvariate) was extracted, and mean-corrected for general task 

effects. A new GLM was obtained using this time-course as regressor together with a regressor 

for the task-contrast of interest, and their interaction (i.e. PPI). To maintain power, we limited 

this analysis to the identification of connectivity differences in the overall condition contrast 

(threat versus safe). Finally, contrast-maps of the PPI were entered in separate full-factorial 

models to test for testosterone administration effects on threat-related OFC connectivity. 

Although this approach does not allow to test for connectivity modulations based on specific 

threat distances, it does provide insight into connectivity pattern modulations across 

dynamically changing threatening compared to safe conditions in general. 

7.2.9 RS-fMRI	analysis	

7.2.9.1 Preprocessing	

Functional and anatomical images were processed using the fMRI Signal Processing Toolbox 

for MATLAB (Patel et al., 2014). Anatomical images were skull-stripped. Functional image 

pre-processing consisted of core image processing and denoising. Core image processing 

started with slice timing correction with the middle slide as the reference. All frequencies except 

Nyquist and zero frequencies were kept. Rigid-body parameters (3 rotations and 3 translations) 

and their first derivatives necessary for head movement correction were calculated and all 

functional images were aligned to the first frame. Next, affine transformations were calculated 

and used to co-register the functional data to the skull-stripped anatomical image using a grey 

matter mask. Zeropadding temporarily added 100 zeros to the end of the time series to prevent 

errors in denoising the data at a later stage. The data were then transformed to the Montreal 
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Neurological Institute template (average of 152 brains; MNI152), T1 weighted, in standard 

space by non-linear warping. 

 

Head movement during fMRI scans have been shown to affect functional connectivity measures 

such as decreased long-distance correlations and increased short-distance correlations (Van 

Dijk et al., 2012). Traditional methods can remove some artefacts, but are not able to correct 

for subtler artefacts, such as spike-like movements that lead to spin-history effects. We used a 

data-driven method that identifies, models, and removes motion artefacts by wavelet despiking 

(Patel et al., 2014), without the need for data scrubbing. This method first decomposes the time 

series into a set of scales using the Maximal Overlap Discrete Wavelet Transform (MODWT). 

It then identifies maximal and minimal wavelet coefficients and detects and removes chains of 

these coefficients. Such chains are present across multiple scales at the same point in time and 

represent transients of all sizes. Lastly, the time series are recomposed from the remaining 

coefficients using inverse MODWT (iMODWT). After wavelet despiking, motion, motion 

derivatives, CSF and white matter were regressed out. 

7.2.9.2 Seed-based	connectivity	analysis	

To assess OFC connectivity modulations by testosterone, the pre-processed wavelet despiked 

images were band-pass filtered (0.1 - 0.01Hz) and average time-series were extracted for the 

same OFC sphere used in the PPI analyses of the TET. Whole-brain connectivity maps were 

calculated based on Pearson correlations between the seed time series and the rest of the brain. 

The resulting connectivity maps were z-transformed, and these were analysed in SPM8 using a 

pairwise comparison and the same statistical thresholds as used in the TET analyses. To further 

explore connectivity modulations by testosterone, we also performed this analysis using the 
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three bilateral amygdala sub-nuclei seeds obtained from an anatomical connectivity derived 

amygdala sub parcellation (Bzdok, Laird, Zilles, Fox, & Eickhoff, 2013). 

7.2.9.3 Whole-brain	connectivity	analysis	

In addition to the hypothesis driven seed-based resting-state connectivity analysis, we also 

employed a data-driven independent component analysis (ICA) to explore potential whole brain 

effects of testosterone on functional connectivity. Seed-based analyses only focus on very 

specific networks and connections. In contrast, independent component analysis makes no 

assumptions about the underlying networks and thus allows a model-free analysis of any 

potential differences. Analyses were carried out using Probabilistic Independent Component 

Analysis (Beckmann & Smith, 2004) as implemented in MELODIC (Multivariate Exploratory 

Linear Decomposition into Independent Components) Version 3.14, part of FSL (FMRIB's 

Software Library, www.fmrib.ox.ac.uk/fsl). The following steps were applied to the pre-

processed wavelet despiked data: masking of non-brain voxels; voxel-wise de-meaning of the 

data; normalisation of the voxel-wise variance. Pre-processed data were whitened and projected 

into a 35-dimensional subspace using probabilistic Principal Component Analysis where the 

number of dimensions was estimated using the Laplace approximation to the Bayesian evidence 

of the model order (Beckmann & Smith, 2004), thus resulting in 35 independent components. 

The whitened observations were decomposed into sets of vectors which describe signal 

variation across the temporal domain (time-courses), the session/subject domain and across the 

spatial domain (maps) by optimising for non-Gaussian spatial source distributions using a 

fixed-point iteration technique (Hyvärinen, 1999b). Estimated Component maps were divided 

by the standard deviation of the residual noise and thresholded by fitting a mixture model to the 

histogram of intensity values (Beckmann & Smith, 2004). Permutation testing was used to 
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assess potential effects of testosterone across all 35 components, using 5000 permutations and 

a threshold free cluster enhancement (TFCE) to control for multiple comparison as 

implemented in FSL’s randomise tool (Winkler, Ridgway, Webster, Smith, & Nichols, 2014). 

7.2.9.4 Data	availability	

Non-thresholded statistical maps of the main fMRI analyses can be found at the NeuroVault 

data repository (Gorgolewski et al., 2015): http://neurovault.org/collections/AUIXVATH/ and 

http://neurovault.org/collections/ISHJRKRU/. All other data are available on request from the 

authors. 

7.3 Results	

7.3.1 Subjective	experience	data	

Participants were asked to guess which session had included the testosterone dose and they 

were unable to correctly guess above chance (χ2=0.2338, p=0.63). Additionally, POMS-II 

mood scales showed no difference on the total mood scale (Heuchert et al, 2012) between drug 

conditions (t(22)=0.928, p=0.364), and when looking at the separate moods this was also the 

case for anger, vigour, confusion, tension, and fatigue (all ps > 0.38). Depression was 

significantly lower in the testosterone (1.07, SD=0.12) compared to placebo (1.15, SD=0.20) 

condition (t(21)=2.791, p=0.011), but this small difference could be considered negligible as in 

both conditions these scores are near the absolute minimum of score ‘1’ which in the 5-point 

Likert scale represents ‘no depression at all’. 

 

The fear ratings regarding the AN, rated on a 7-point Likert scale, were generally high in both 

drug conditions (testosterone: M=5.71, SD=1.34; placebo: M=6.12, SD=1.01) and over both 
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sessions (session 1: M=6.02, SD=1.02; session 2: M=5.82 SD=1.36). Paired sample T-tests 

confirmed no significant difference between the two drug conditions (t(21)=-1.7, p=0.103) or 

between the two sessions (t(21)=-0.78, p=0.444). 

 

7.3.2 Threat	escape	task	

7.3.2.1 General	task	effects	

Statistics and results for the TET are summarized in Table 7.1, Figure 7.2, and see 

http://neurovault.org/collections/AUIXVATH/ for non-thresholded statistical maps. In line 

with previous work on acute and escapable threat (Klumpers et al., 2010; Mobbs et al., 2007; 

Montoya et al., 2015), we observed reliable threat-potentiated activity in the salience network 

of the brain (anterior insula, dorsal anterior cingulate cortex, thalamus and striatum) in all three 

distance conditions. Furthermore, both high threat conditions (imminent and inescapable) 

evoked midbrain activity, and both escapable threat conditions (distant and imminent) evoked 

hypothalamic reactions. Threat-related deactivations were observed in the medial prefrontal 

cortex, including the medial OFC (MOFC), particularly in the high threat conditions, and 

inescapable threat also deactivated areas in the medial temporal cortex and the angular gyrus. 

 

As can be seen in Table 7.1 and Figure 7.2, analysis of threat level and escapability revealed 

that high threat evoked midbrain reactivity and deactivations in medial prefrontal. Striatal 

reactivity to threat was strongest when the threat was escapable. Thus, in line with previous 

studies (Klumpers et al., 2010; Mobbs et al., 2007; Montoya et al., 2015) an approaching threat 

shifts brain activity away from cortical towards subcortical processing, whereby the 

anticipation for an active escape response evokes striatal threat reactivity. 
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7.3.2.2 Testosterone	administration	effects	

Testosterone had no direct effect on threat reactivity in the three distance conditions separately2, 

but did increase activity in the left lateral OFC (LOFC) in escapable compared to inescapable 

threatening conditions (see Figure 7.2). Post-hoc T-tests showed this was due to an increase to 

escapable rather than a decrease to inescapable threat (see Table 7.1). 

 

PPI-analysis (see methods) using the location of this LOFC cluster revealed that testosterone 

administration reduced threat-related connectivity with the midbrain, hypothalamus, left 

amygdala and MOFC (see Figure 7.2). More specific allocation of the midbrain cluster 

indicated that it corresponds to the location of the periaqueductal gray (see (Hermans, 

Henckens, Roelofs, & Fernández, 2013)) and the amygdala cluster corresponds to the left 

central-medial amygdala  (CMA; see (Amunts et al., 2005)) Finally, post-hoc T-tests revealed 

that specifically in the testosterone condition left-sided LOFC-CMA coupling was reduced in 

threat compared to safe conditions. 

 

7.3.2.3 2D:4D	analysis	

To investigate the relation between testosterone administration effects and 2D:4D, beta weights 

were extracted from a 6mm sphere around the LOFC peak activation identified in the 

																																																								

2 This was also the case when applying a more liberal threshold; p<.01 as cluster-defining 

threshold 
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testosterone/TET analysis. These beta-weights were entered in a 2 (testosterone and placebo) x 

2 (threat and safe) x 3 (distant, imminent and inescapable) repeated measures ANOVA with 

2D:4D as covariate. The 2D:4D covariate was non-significant (F(1,20)=0.443, p=.513), which 

was also the case for its interactions with the within-subjects variables (all p’s > .16). 

 

Table	7.1:	Functional	MRI	findings.		

All	 reported	clusters	are	activations	 (or	deactivations,	 indicated	with	a	negative	T-value)	 to	 threat>safe	

contrasts.	 Clusters	 are	 whole-brain	 statistics	 FWE	 cluster-wise	 corrected	 (p<.05)	 with	 cluster	 defining	

threshold	 p<.001,	 or	 in	 case	 of	 region	 of	 interest	 analysis	 (indicated	 with	 *,	 and	 see	 Fig.	 7.2	 for	 a	

visualisation)	FWE	voxel-wise	corrected	(p<.05).	PFC	=	Prefrontal	Cortex,	OFC	=	Orbitofrontal	Cortex,	s.c.	=	

same	cluster.	

Structure Hemisphere Cluster size p-value Peak T-value MNI-coordinate 

          X Y Z 

Threat effects 

Inescapable 

Anterior Insula Left 571 0.006 5.43 -32 20 4 

 Right 793 0.001 5.67 34 24 -6 

Anterior Cingulate 
Cortex 

Both 1986 <.001 4.8 -6 10 38 

Supplemental Motor 
Area 

Both s.c.      

Striatum Both 872 0.001 4.45 -10 4 0 

Thalamus Both s.c.      

Midbrain Both s.c.      

Midbrain* Both 321 0.002 4.39 8 -14 -10 

Angular Gyrus Left 480 0.012 -4.65 -48 -60 28 

 Right 508 0.01 -4.61 50 -66 32 

Medial OFC Both 3049 <.001 -4.89 -8 40 -8 

Medial Temporal Cortex Left 617 0.004 -4.69 -48 -38 0 

Medial OFC* Both 551 <.001 -4.89 -8 40 -8 

Imminent 

Anterior Insula Both 6554 <.001 7.23 32 26 -4 

Striatum Both s.c.      

Thalamus Both s.c.      

Midbrain Both s.c.      
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Anterior Cingulate 
Cortex 

Both 2245 <.001 6.03 2 10 48 

Supplemental Motor 
Area 

Both s.c.      

Hypothalamus* Both 5 0.041 2.91 -2 -2 -6 

Midbrain* Both 372 <.001 4.44 6 -26 -10 

Medial OFC Both 682 0.002 -4.99 4 30 -14 

Dorsomedial PFC Left 441 0.017 -4.87 -20 32 44 

Medial OFC* Both 227 <.001 -4.99 4 30 -14 

Distant 

Anterior Insula Left 897 <.001 5.55 -36 20 4 

 Right 706 0.002 5.97 36 24 4 

Anterior Cingulate 
Cortex 

Both 1612 <.001 6.53 -6 4 48 

Supplemental Motor 
Area 

Both s.c.      

Striatum Both 879 0.001 5.07 8 -12 4 

Thalamus Both s.c.      

Hypothalamus* Left 31 0.013 3.28 -6 -4 -12 

        
Threat escapability effects 

Escapable>Inescapable 

Medial PFC Both 1831 <.001 4.65 18 30 -4 

Striatum Both s.c.      

Medial Temporal Cortex Left 763 0.001 4.18 -42 -40 0 

Medial OFC* Left 11 0.017 4.1 -6 56 -18 

High>Low 

Midbrain* Left 10 0.02 3.75 -6 -26 -10 

Medial OFC Both 1607 <.001 -5.11 2 34 -16 

Dorsomedial PFC Left 367 0.033 -4.39 -14 60 18 

Medial Temporal Cortex Left 465 0.014 -4.01 -52 -56 -8 

Medial OFC* Both 373 <.001 -5.11 2 34 -16 

 Left 40 0.007 -4.35 -10 52 -16 

Distant>Imminent 

Medial OFC* Both 90 0.003 4.56 4 30 -14 

Imminent>Inescapable 

Striatum Both 635 0.003 4.24 18 28 -4 

Distant>Inescapable 

Medial PFC Both 2260 <.001 4.75 10 24 -4 

Striatum Both s.c.      

Medial Temporal Cortex Left 1062 <.001 4.25 -40 -32 -6 
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Medial OFC* Both 367 0.004 4.48 -6 56 -18 

        
Drug, threat escapability interactions 

Testosterone>Placebo: Escapable>Inescapable 

Lateral OFC Left 347 0.04 4.39 -28 48 -6 

Lateral OFC* Left 27 0.006 4.39 -28 48 -6 

Testosterone>Placebo: Escapable 

Lateral OFC* Left 2 0.044 3.82 -28 50 -4 

Testosterone>Placebo: Distant>Inescapable) 

Lateral OFC* Left 19 0.006 4.39 -28 48 -6 

        
Drug, psycho-physiological interactions 

PPI of Threat>Safe with lOFC signal: Placebo>Testosterone 

Medial Temporal Cortex Right 1539 <.001 5.44 60 -44 14 

Superior Temporal 
Cortex 

Right 785 <.001 5.33 54 -22 2 

Anterior Insula s.c. s.c.      

Striatum s.c. s.c.      

Hypothalamus* Both 67 0.012 3.58 0 -4 -18 

Midbrain* Right 13 0.018 4.14 10 -32 -12 

Medial OFC* Both 12 0.024 4.44 2 56 -10 

Amygdala* Left 45 <.001 5.33 -22 -8 -8 

PPI of Threat>Safe with lOFC signal: Testosterone 

Amygdala* Left 26 0.003 -4.64 -26 -8 -8 
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Figure 7.2: Functional MRI findings.  

Only significant clusters are shown. a, TET effects: All three threat conditions reliably activated the brain’s 

salience network consisting of the anterior insula, dorsal ACC, thalamus and striatum. The medial prefrontal cortex 

deactivated particularly when under high threat conditions, the midbrain particularly reacted to high threat, and 

threat evoked increased striatal activity particularly when it was escapable. b, Testosterone effects: Testosterone 

activated the left lateral OFC in response to escapable threat, and decoupled this OFC cluster from the midbrain 

(PAG), left amygdala (CMA), hypothalamus and medial OFC in threat compared to safe conditions. 
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7.3.3 RS-fMRI	Results	

To specifically investigate testosterone’s effect during resting state, whole-brain correlation 

maps (based on Fischer z-transformed Pearson correlation maps) were computed for the LOFC 

seed. In both drug conditions left LOFC connectivity was particularly strong with the right 

OFC, bilateral striatum and anterior cingulate cortex (see Figure 7.3). Pairwise comparisons 

indicated no significant differences between placebo and testosterone, also when applying a 

more liberal threshold (p<.01 as cluster-defining threshold). Similarly, pairwise comparisons 

of the z-maps also indicated no significant differences between placebo and testosterone for any 

of the amygdala seeds (Bzdok et al., 2013) using the same liberal thresholds, and exploratory 

ICA analysis did not reveal any differences between drug conditions (see 

http://neurovault.org/collections/AUIXVATH/ for seed-based non-thresholded statistical maps 

and http://neurovault.org/collections/ISHJRKRU/ for the 35 identified ICA components). 

Details of the amygdala and whole-brain analysis are provided in the supplementary materials. 

 

Figure 7.3: Resting state connectivity of the left lateral OFC.  

Connectivity was particularly strong with the right OFC, bilateral striatum and anterior cingulate cortex. This 

pattern was similar after testosterone and placebo administration. 
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7.4 Discussion	

This study provides evidence that a single administration of testosterone changes the activation 

and connectivity pattern of the left LOFC particularly when under acute threat. Testosterone 

activates the left LOFC in situations of goal-directed escape anticipation, and decouples the left 

LOFC from a subcortical threat network (i.e. CMA, hypothalamus and PAG) when under threat. 

 

To start with the latter, this testosterone induced LOFC-subcortex decoupling can theoretically 

either constitute a loss of top-down control over the subcortical threat system, or a decrease of 

bottom-up input to the LOFC. We cannot assess the direction of this effect directly in the 

present data, but given that we find reliable threat-reactivity in this subcortical threat system, 

which does not change after testosterone administration, a loss of top-down control seems 

unlikely. Alternatively, testosterone might thus prevent subcortically generated threat reactivity 

to influence the OFC. Following the view that OFC-amygdala connectivity serves to adjust 

behaviour based on the integration of top-down goal-directed action tendencies and bottom-up 

affective reactivity (Kringelbach & Rolls, 2004; Milad & Rauch, 2007; Murray & Izquierdo, 

2007; Zald et al., 2014), testosterone might thus push OFC processing towards goal-directed 

action. Further support for this view can be found in our observation that testosterone 

specifically boosts LOFC activity in situations that require such a goal-directed action, i.e. 

active escape from a threat. Although we cannot assess any behavioural benefit from this 

testosterone-driven LOFC activity with the present design –given that it adjusts to the behaviour 

of the participant to keep threat levels stable across participants–, these results do follow the 

hypothesis that testosterone can promote goal-directed action in case of threat (Terburg & van 

Honk, 2013; van Honk, Terburg, et al., 2011). 
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An interesting aspect of the present findings is the functional distinction between LOFC and 

MOFC. Both areas are structurally (Murray & Izquierdo, 2007) and functionally (Zald et al., 

2014) connected to the amygdala, but in the MOFC this connection has been linked to impulse 

control and reward drive, whereas in the LOFC to adjustment of behaviour in case of potential 

punishment (Kringelbach & Rolls, 2004; Milad & Rauch, 2007). This seems to be in line with 

the MOFC deactivation in response to high threat observed here and in previous studies (Mobbs 

et al., 2007; Montoya et al., 2015). Moreover, the fact that testosterone boosts the LOFC 

particularly in situations of goal-directed escape anticipation seamlessly links to the LOFC’s 

sensitivity for potentially punishing or dangerous situations. 

 

Interestingly, testosterone has also been linked to a downregulation of MOFC activity in 

relation to social aggression (Mehta & Beer, 2010). The authors interpreted this effect as a 

reduction of impulse control from the MOFC due to testosterone, which is further emphasized 

by evidence that testosterone levels in adolescent boys predict reduced MOFC-amygdala 

connectivity, which in turn is associated with increased alcohol use (Peters, Jolles, 

Duijvenvoorde, Crone, & Peper, 2015). Moreover, in many other testosterone administration 

studies increased socially aggressive impulses have been observed (e.g. (Terburg et al., 2016; 

Terburg, Aarts, & van Honk, 2012; van Honk et al., 2001)), which has also been associated 

with an upregulation of activation in the same subcortical threat system as reported here (Goetz 

et al., 2014; Hermans, Ramsey, & van Honk, 2008). Together, a framework emerges wherein 

testosterone decouples the OFC from the amygdala resulting in reduced impulse control from 

the MOFC, underlying tendencies of risk taking and social aggression, and reduced input into 

the LOFC, underlying goal-directed behaviour in case of threat. By decoupling the OFC from 
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the subcortical threat system testosterone thus prepares the human brain for aggressive as well 

as evasive action in case of threat. 
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Chapter	8 Discussion		

Throughout	 this	 thesis	 we	 have	 attempted	 to	 answer	 the	 broad	 question	 of	 what	

influences	 brain	 morphology.	 Specifically,	 we	 focused	 our	 attention	 on	 potential	

differences	between	typical	and	atypical	development	such	as	seen	in	autism	and	ADHD	

by	taking	a	micro-	to	macro-scale	approach.	At	the	micro	level	we	sought	to	disentangle	

how	 genetic	 influences	might	 contribute	 to	morphological	 brain	 differences.	 Then	we	

attempted	 to	 explore	 differences	 in	 brain	 function	 that	might	 arise	 from	 such	 altered	

structural	 developmental	 patterns.	 Subsequently,	 we	 attempted	 to	 gain	 a	 better	

understanding	of	how	hormones	and	gender	influence	these	processes	in	terms	of	brain	

function	and	behaviour	at	the	macro	level.	Although	it	should	be	noted	that	the	present	

work	largely	does	not	include	direct	comparisons	between	male	and	female	groups	(with	

the	 exception	 of	 chapter	 4).	 The	 effect	 of	 gender	 has	mainly	 been	 investigated	 in	 the	

context	of	the	interaction	between	brain	function	and	sex	hormones	and	inferences	about	

gender	differences	are	thus	more	speculative	than	experimental	at	this	point.	Future	work	

will	look	more	directly	at	gender	differences	in	brain	morphology.	There	are	a	number	of	

points	to	be	taken	away	from	this	as	outlined	in	Figure	8.1	and	subsequent	sections	of	this	

concluding	chapter.	
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Figure 8.1: Framework 

Each number refers to sections in this chapter. 

8.1 Brain	morphology	is	different	in	autism	

First,	atypical	development	(such	as	 is	 the	case	 in	autism	or	ADHD)	 is	associated	with	

altered	brain	morphology	 (Figure	8.1	 -	 label	8.1).	Most	prominently	perhaps	are	early	

findings	of	altered	developmental	trajectories	(Courchesne,	2002;	Courchesne	et	al.,	2001,	

2011).	 Possibly	 as	 a	 result	 of	 these	 early	 broad	 perturbations,	 neuroanatomical	

differences	later	in	life	do	not	appear	to	be	restricted	to	isolated	brain	regions.	A	review	

by	Amaral	and	colleagues	provide	an	overview	of	 the	wide	range	of	brain	regions	that	

might	be	affected	 in	autism	and	could	underlie	 the	triad	of	autism	symptoms	(Amaral,	

Schumann,	&	Nordahl,	 2008).	 	 The	 pattern	 that	 emerges	 from	 this	 and	 other	 reviews	

(Ecker,	2016;	Toal,	Murphy,	&	Murphy,	2005)	is	one	of	heterogeneity	and	broad	whole-

brain	 effects.	 We	 started	 our	 analysis	 by	 quantifying	 these	 potential	 differences	 for	

ourselves	in	our	own	(MRC-AIMS)	and	publically	available	(ABIDE)	data.	Both	Chapters	2	
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and	4	affirm	the	notion	of	altered	brain	morphology	in	autism	both	in	children	(Chapter	

2)	as	well	as	later	in	life	(Chapter	4).	However,	this	work	also	emphasizes	the	notion	that	

differences	are	extremely	heterogeneous	and	are	perhaps	not	truly	captured	by	one-size-

fits-all	theories.		

	

The	present	data	only	provides	snapshots	of	brain	morphology	at	a	very	specific	time-

point.	 Structural	 covariance	 is	 assumed	 to	 capture	 differences	 in	 developmental	

trajectories	but	it	does	not	provide	detailed	information	as	to	when	and	precisely	how	

those	trajectories	change	over	time.	Some	of	 the	differences	observed	 in	children	with	

autism	(Chapter	2)	were	not	observed	in	adults	with	autism	(Chapter	4).	It	is	difficult	to	

directly	 compare	 between	 these	 two	 datasets	 however.	 In	 the	 ABIDE	 data	 used	 for	

Chapter	2	we	explicitly	restricted	our	analyses	to	a	very	narrow	age	range	to	avoid	having	

to	regress	out	age	as	a	moderating	factor.	It	is	well	known	that	age	and	CT	have	a	strong	

significant	correlation,	but	we	also	know	that	developmental	trajectories	in	autism	might	

differ.	 Thus,	 regressing	 out	 age	 in	 the	 child	 dataset	 would	 also	 effectively	 potentially	

remove	 variance	 caused	 by	 these	 differing	 developmental	 trajectories	 that	 might	 be	

associated	with	the	condition	itself.		

	

In	the	adult	MRC-AIMS	dataset	(Chapter	4)	however,	age	had	to	be	regressed	out	because	

we	were	dealing	with	 a	 large	 age	 range	 and	 thus	 the	 correlation	between	age	 and	CT	

would	have	a	much	larger	effect	on	the	overall	variability	in	cortical	thickness.	Regressing	

out	age	in	this	would	have	also	likely	removed	some	variance	explained	by	the	condition	

itself.	However,	it	would	have	been	impossible	to	clearly	distinguish	between	the	two	and	
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thus	two	quantify	how	much	of	the	variance	was	due	to	age	effects	and	how	much	due	to	

diagnosis.		

	

In	an	ideal	world	one	would	be	able	to	trace	those	trajectories	in	a	longitudinal	design	and	

preferably	from	the	same	individuals.	Initiatives	such	as	EU-AIMS	and	even	ABIDE	aim	to	

gather	such	data,	but	at	present	this	is	not	available.	Furthermore,	as	stressed	throughout	

this	thesis,	structural	covariance	analysis	at	present	only	allows	us	to	analyse	group	based	

covariance.	 Thus,	 individual	 level	 data	 is	 not	 present	 at	 the	 level	 of	 network	 analysis.	

Unfortunately,	 this	prevents	a	detailed	analysis	of	 inter-individual	variation,	which	we	

expect	to	be	substantial	in	autism	as	well	as	ADHD.	As	methods	are	being	developed	to	

assess	individual	level	morphometric	covariance	we	will	aim	to	apply	these	to	the	present	

data	as	well.	

8.2 Biological	sex	modulates	brain	morphology	in	autism	

Second,	we	know	that	biological	sex	modulates	brain	development	and	interacts	with	the	

autism	phenotypic	expression	(Lai	et	al.,	2014,	2015)	(Figure	8.1	-	label	8.2).	The	clearest	

evidence	for	that	is	the	male	bias	in	autism,	with	an	approximate	4	to	1	ratio	of	males	to	

females.	The	theories	discussed	in	Chapter	4	such	as	the	EMB	(Baron-Cohen,	2002)	and	

GI	(Bejerot	et	al.,	2012)	theories	capture	some	of	the	spectrums	broad	variability	in	that	

respect.	 They	 furthermore	 provide	 a	 testable	 framework	 to	 study	 sex	 differences	 in	

autism.	For	example,	Lai	and	colleagues	showed	that	neurobiological	variation	associated	

with	autism,	as	captured	with	structural	neuroimaging,	showed	minimal	spatial	overlap	

between	sexes	(Lai,	Lombardo,	Suckling,	et	al.,	2013).	From	this	it	can	be	concluded	that	
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autism	manifests	differently	between	sexes	at	a	brain	morphological	level.	Specifically,	in	

the	 same	 study	 it	was	 shown	 that	 the	 pattern	 in	 females	with	 autism	 showed	 neural	

‘masculinization’	 as	 would	 be	 predicted	 by	 the	 EMB	 theory.	 Interestingly	 though,	 the	

study	did	 not	 show	 a	 similar	 effect	 in	 the	male	 autism	 group.	 Likely	 the	 difference	 in	

‘masculinization’	for	men	was	too	small	to	be	observed	as	an	extreme	of	the	normative	

sex	 difference.	 This	 could	 also	 be	 seen	 as	 evidence	 for	 the	 hypotheses	 that	women	 in	

general	need	a	higher	disease	burden	to	develop	the	condition	(Werling	&	Geschwind,	

2013).	In	Chapter	4	we	sought	to	use	the	same	data	modality	we	used	in	Chapter	2	to	test	

for	 GI	 or	 EMB	 patterns	 similar	 to	 the	 Lai	 et	 al.	 study	 (2013).	 While	 confirming	 the	

existence	of	a	normative	sex	difference	our	results	show	evidence	 for	both	 theories	 in	

different	brain	regions	and	to	different	extends.	In	general,	the	pattern	of	neurobiological	

differences	 between	 neurotypical	 adults	 and	 adults	 with	 autism	 was	 extremely	

heterogeneous.		

	

One	caveat	of	the	data	presented	in	Chapters	2	and	4	that	may	not	have	been	addressed	

enough	is	the	fact	that	structural	covariance	analysis	by	definition	provides	only	a	single	

data-point	per	group.	Because	the	covariance	is	based	on	the	groups	covariance,	it	is	not	

a	method	well	suited	to	capture	specific	 individual	variance.	 In	both	chapters	we	used	

different	approaches	to	navigate	that	problem.	In	Chapter	2	we	permuted	the	underlying	

distribution	to	create	a	null-distribution	that	could	be	used	for	two-sample	permutation	

tests.	This	method	however	was	not	suited	to	test	rank-order	effects	as	there	is	really	no	

workable	 version	 of	 a	 three-	 (or	 even	 four)	 sample	 permutation,	 other	 than	 moving	

directly	 to	 post-doc	 testing	 of	 individual	 pairs.	 Thus	 in	 Chapter	 4	 we	 chose	 to	 use	

bootstrapping	to	create	confidence	intervals	for	each	group	and	test	linear	rank	orders	on	
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those.	 It	 appears	 that	 in	 the	 present	 data	 the	 bootstrapping	 approach	 provided	many	

more	 significant	 differences	 between	 the	 groups.	 Thus,	 it	 is	 possible	 that	 the	

bootstrapping	approach	was	more	sensitive	to	false	positives.	We	are	currently	planning	

to	run	parts	of	the	analyses	done	in	Chapter	4	using	permutation	tests	of	individual	group	

pairs	and	see	whether	the	results	show	spatial	overlap	with	those	found	on	pair-wise	tests	

of	bootstrapped	groups.		

	

8.3 Sex	hormones	influence	brain	morphology		

Thirdly,	and	strongly	related	to	the	previous	point,	we	also	know	that	sex	hormones	in	

general	influence	brain	morphology	and	function	(Figure	8.1	-	label	8.3).	Specifically,	the	

hormones	 estradiol	 and	 testosterone	 have	 been	 repeatedly	 shown	 to	 alter	 brain	

morphology	by	driving	sexual	differentiation	(McCarthy	et	al.,	2012).	This	 is	a	process	

that	happens	 from	birth	as	various	 studies	have	 shown	 that	prenatal	 indicators	of	 for	

example	testosterone	have	been	associated	with	morphological	differences	 later	 in	 life	

(Lombardo,	Ashwin,	Auyeung,	Chakrabarti,	Taylor,	et	al.,	2012;	Peper,	Brouwer,	van	Baal,	

et	al.,	2009).		

	

The	effects	of	hormones	on	brain	morphology	(and	function)	are	not	restricted	to	prenatal	

or	early	development.	 It	has	been	well	documented	for	example	that	surging	hormone	

levels	 during	 puberty	 also	 have	 profound	 effects	 on	 brain	 reorganization	 as	 well	

(Koolschijn	et	al.,	2014;	Peper,	Brouwer,	Schnack,	et	al.,	2009;	Peper	et	al.,	2011).	Given	

this	continuous	influence	that	hormones	play	on	altered	brain	structure	and	functions	it	
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is	hard	to	pin-point	their	precise	effects	on	behaviour	or	ascribe	them	a	general	function	

beyond	stating	 that	 they	 ‘masculinize’	or	 ‘feminize’	 the	brain.	 If,	as	some	authors	have	

suggested	(Baron-Cohen,	2002;	Bejerot	et	al.,	2012),	sex	hormones	are	indeed	strongly	

intertwined	 with	 atypical	 development	 they	 may	 prove	 to	 be	 useful	 as	 therapeutics	

(Meyer-Lindenberg	 et	 al.,	 2011).	 A	 better	 understanding	 of	 their	 long-term	 effects	 is	

certainly	 needed.	 In	 the	 present	 work	 we	 have	 only	 highlighted	 some	 interactions	

between	sex	hormones	and	brain	function	in	an	acute	short-term	way	(e.g.	by	looking	at	

effects	 of	 administering	 these	 hormones)	 and	not	 in	 a	 clinical	 or	 neurodevelopmental	

population.		

	

In	Chapter	7	we	attempted	to	include	a	measure	of	prenatal	hormones	exposure	(e.g.	2D-

4D	ratio)	in	our	analysis	as	previous	studies	had	shown	that	these	might	modulate	effects	

later	in	life	(van	Honk,	Schutter,	et	al.,	2011).	In	the	context	of	both	fear	modulation	and	

resting-state	 connectivity	we	 found	 no	moderating	 effects	 of	 this	marker	 for	 prenatal	

testosterone.	Thus,	one	could	hypothesize	that	both	transient	as	well	as	prenatal	effects	

of	 testosterone	 are	 likely	 to	 be	 context	 dependent.	 Ideally	 studies	 looking	 into	 acute	

effects	of	hormones	or	neurobiological	effect	of	sex	would	account	for	hormone	levels	and	

the	effect	of	pre-	and	postnatal	exposure	on	brain	morphology.	Obviously	this	is	a	near	

impossible	 task	 given	 that	 such	 detailed	 longitudinal	 data	 is	 almost	 never	 available.	

Nonetheless,	basic	parameters	such	as	digit-ratios,	pubertal	 stage	or	development	and	

behavioural	 patterns	 of	 ‘masculinization’	 or	 ‘feminization’	 can	 be	 included	 to	 provide	

better	insights	into	the	interaction	hormones	might	play	on	brain	morphology.	
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8.4 Genes	modulate	brain	morphology	

Fourth,	and	likely	much	earlier	in	the	complex	causal	chain	of	interactions,	we	know	that	

genes	have	a	driving	influence	on	brain	morphology	and	ultimately	on	behaviour	(Figure	

8.1	-	label	8.4).	The	fact	that	there	are	many	genetic	determinants	for	shaping	the	human	

brain	is	not	new	nor	surprising.	What	is	new	is	the	ability	to	study	the	precise	relationship	

between	 the	 two.	 For	 example	 Whitaker	 and	 colleagues	 were	 recently	 able	 to	 link	

transcriptional	 profiles	 from	 publically	 available	 AIBS	 data	 to	 processes	 of	 cortical	

myelination	 and	brain	maturation	 (Whitaker	 et	 al.,	 2016).	Given	 that	 one	of	 our	most	

prominent	measures	relies	on	myelination	(e.g.	differences	in	CT	are	ultimately	the	result	

of	 changes	 in	 the	 grey-white	 matter	 ratio	 and	 profile	 and	 thus	 of	 myelination)	 we	

hypothesized	that	any	differences	in	CT	in	individuals	with	autism	might	be	driven	by	a	

transcriptional	 profile	 that	 should	 overlap	with	 a	 genetic	 profile	 of	 autism	 risk	 genes.	

Thus,	 in	 Chapter	 3	we	 investigated	which	 risk	 genes	 for	 autism	were	 associated	with	

alterations	observed	in	brain	morphology.	We	showed	that	transcriptional	modules	that	

are	downregulated	in	autism	post-mortem	cortex	(both	during	development	as	well	as	

later	 in	 life)	 are	 the	 strongest	 associated	 with	 whole-brain	 differences	 in	 cortical	

thickness.		

	

Although	the	data	available	to	disentangle	this	complex	interaction	is	far	from	ideal	and	

analyses	 largely	 rely	 on	 post-mortem	 examination,	 it	 provides	 the	 first	 insights	 into	

linking	genetics	with	neurobiology	and	hopefully	ultimately	with	behaviour.	Perhaps	the	

most	 important	 caveat	 of	 the	 results	 presented	 in	 Chapter	 3,	with	 regards	 to	 the	 link	

between	gene	expression	and	alterations	in	CT,	is	the	time	discrepancy	between	datasets.	
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The	CT	estimates	were	based	on	imaging	data	obtained	from	children	whereas	the	gene	

expression	was	based	on	the	6	adult	donors	in	the	AIBS	dataset.	 	It	is	known	that	gene	

expression	may	change	over	time	(Glass	et	al.,	2013)	and	it	is	possible	some	of	the	gene	

modules	 change	 over	 time.	 Unfortunately,	 there	 is	 no	 spatially	 detailed	 information	

available	on	gene	expression	(neither	from	autism	donors	nor	from	neurotypical	donors)	

that	 would	 allow	 any	 other	 comparison.	 There	 is	 less	 spatially	 detailed	 information	

available	and	we	tried	to	address	that	issue	in	our	analysis	for	Chapter	3	by	also	using	

genetic	modules	obtained	from	developmental	gene-expression	datasets.		

	

Ideally	 however,	 one	would	 be	 able	 to	 have	 age-matched	 samples	 or	 have	 both	 gene	

expression	as	well	as	cortical	thickness	estimates	from	the	same	individuals.	In	a	less	ideal	

world	however	one	could	address	the	question	of	this	developmental	(or	time-varying)	

variability	using	longitudinal	imaging	data	(for	example,	by	using	longitudinal	studies	or	

by	proxy	and	use	datasets	that	span	a	wider	age-range).	Another	approach	could	be	to	

assess	 the	 spatiotemporal	 profile	 of	 gene-expression	 in	 individuals	 with	 autism	 and	

healthy	 individuals	 to	address	whether	 there	are	even	any	baseline	differences	 in	 this	

profile.	Although	not	as	spatially	accurate,	there	are	datasets	that	allow	this	type	of	time-

varying	analysis	(Parikshak	et	al.,	2013;	Parikshak,	Swarup,	Belgard,	Irimia,	Ramaswami,	

Gandal,	 Hartl,	 Leppa,	 De,	 et	 al.,	 2016).	 As	 a	 future	 project	 we	 plan	 to	 investigate	

spatiotemporal	 profiles	 of	 gene-expression	 in	 these	 data.	 Specifically,	we	 plan	 to	 look	



182	 Discussion	

	

	Page	|	182	

whether	autism	risk	genes	might	show	more	variability	in	modular	membership	across	

time	and	brain	regions3.		

	

As	 another	 question,	we	 are	 also	 interested	 to	 find	 out	whether	 genes	 that	 are	more	

susceptible	 to	 change	 might	 overlap	 more	 broadly	 with	 genes	 that	 explain	 risk	 for	

developmental	conditions.	For	example,	in	a	parallel	study	(not	reported	here)	we	found	

that	risk	genes	that	are	associated	with	schizophrenia,	autism	and	intellectual	disability	

overlap	with	regions	of	the	genome	known	as	Human	Accelerated	Regions	(HARs)	and,	as	

such,	we	hypothesized	that	some	of	these	genes	might	in	fact	be	under	positive	selection	

(Warrier,	 Bethlehem,	 Geschwind,	 &	 Baron-Cohen,	 2017).	 Our	 rationale	 was	 that	 the	

phenotypic	difficulties	seen	in	these	conditions	are	potentially	extremes	of	adaptive	traits	

that	are	maintained	in	the	general	population	and	thus	likely	to	be	part	of	a	fairly	steady	

genetic	modular	backbone.	As	a	follow-up	it	would	be	interesting	to	see	if	these	genes	are	

also	more	versatile	in	their	expression	profile	over	time	(as	opposed	to	across	species	or	

conditions)	 or	 whether	 they	 are	 consistently	 associated	 with	 the	 same	 or	 similar	

neurobiological	spatiotemporal	profile.	

	

8.5 Sex	differentially	expressed	genes	interact	with	autism	

Fifth,	 although	 not	 addressed	 directly	 in	 this	 thesis	 but	 related	 to	 the	 previous	 three	

points,	we	also	know	that	genes	that	are	differentially	expressed	between	sexes	interacts	

																																																								
3 I have been awarded an exchange fellowship with Professor Dan Geschwind and Dr 
Neelroop Parikshak to work on this project for a period of 8 months at UCLA. 
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with	 autism	 risk	 (Werling,	 Parikshak,	 &	 Geschwind,	 2016)	 (Figure	 8.1	 -	 label	 8.5).	

Interestingly,	Werling	and	colleagues	showed	that	it	is	not	the	autism	risk	genes	per	se	

that	 contribute	 to	 phenotypic	 risk	 but	 that	 sexually	 dimorphic	 genes	 themselves	 can	

increase	or	decrease	 the	 risk	 for	 autism.	This	 further	 strengthens	 the	hypotheses	 that	

basic	 neurobiological	 sex	 differences	 interact	with	 autism.	 This	 is	 not	 a	 topic	 that	we	

addressed	 experimentally	 in	 the	 present	 work.	 It	 is	 noteworthy	 however,	 as	 it	 again	

emphasizes	that	biological	sex	can	be	seen	as	an	overarching	influence	on	many	aspect	of	

neurobiology	and	its	interaction	with	behaviour	and	neurodevelopmental	conditions.	As	

outlined	above	it	would	be	interesting	to	see	if	these	sex	differentially	expressed	genes	

also	 follow	 altered	 developmental	 trajectories	 by	 looking	 at	 their	 spatiotemporal	

characteristics.	Although	at	present	there	are	no	clear	plans	to	include	this	in	our	future	

analysis	of	 spatiotemporal	 gene	 co-expression	 it	will	be	 interesting	 to	explore	 if	 these	

genes	are	robustly	clustered	together	over	time	or	whether	they	interact	with	other	genes	

at	different	time-points	and	spatial	locations.	

	

8.6 Brain	function	is	altered	in	autism	

Sixth,	 it	 can	 also	 be	 assumed	 that	 individuals	 with	 autism	 show	 altered	 patterns	 of	

functional	 organization	 (Figure	8.1	 -	 label	 8.6).	Numerous	 studies	have	 suggested	 and	

shown	that	people	with	autism	will	have	different	patterns	of	connectivity	(Belmonte	et	

al.,	2004;	Cherkassky	et	al.,	2006;	Courchesne	&	Pierce,	2005;	Ebisch	et	al.,	2011;	Just	et	

al.,	 2004;	Kana,	Keller,	 Cherkassky,	Minshew,	&	 Just,	 2006;	Kana	 et	 al.,	 2009;	Noonan,	

Haist,	&	Müller,	2009;	von	dem	Hagen,	Stoyanova,	Baron-Cohen,	&	Calder,	2013).	These	

disconnectivity	theories	and	findings	all	have	merit	to	them	and	they	all	explain	elements	
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of	atypical	development	that	might	underlie	the	neurobiology	of	autism.	However,	they	

again	are	likely	to	capture	only	subgroups	or	elements	of	the	autism	spectrum.		

	

Furthermore,	most	studies	have	explored	connectivity	patterns	in	adults	with	autism	and,	

given	evidence	for	diverging	developmental	trajectories	from	previous	chapters	as	well	

as	 the	 broader	 literature	 (Courchesne,	 2002;	 Courchesne	 et	 al.,	 2001,	 2011),	 the	 link	

between	adult	connectivity	patterns	and	those	of	children	is	not	that	clearly	understood.	

In	addition,	most	of	the	studies	mentioned	previously	have	been	done	on	high-functioning	

adults.	The	reasons	for	both	these	choices	are	likely	both	pragmatic	(e.g.	fMRI	imaging	is	

expensive	and	undoubtedly	easier	with	people	that	clearly	understand	instructions	and	

data	quality	better	with	individuals	who	are	more	at	ease	and	better	able	to	lie	still)	as	

well	as	based	on	theoretical	assumptions	about	high	functioning	adult	autism	being	less	

clouded	 by	 high	 comorbidity	 with	 other	 conditions	 such	 as	 ADHD,	 OCD,	 intellectual	

disability,	or	even	normal	variance	in	developmental	trajectories.	Again,	in	an	ideal	world,	

detailed	longitudinal	studies	would	provide	a	solution	to	deal	with	a	lot	of	these	problems	

in	the	long	term.	In	the	short	term	however	it	might	be	easier	to	use	techniques	that	can	

at	least	deal	with	some	of	the	pragmatic	issues.	EEG	may	provide	one	such	solution	by	the	

simple	fact	that	it	is	cheaper,	less	sensitive	to	noise	from	head	motion	and	less	invasive.	

Which	makes	it	arguably	better	suited	in	paediatric	samples.	

	

Finally,	 techniques	might	 also	 result	 in	 different	 hypotheses	 altogether	 (Vissers	 et	 al.,	

2012).	Early	indications	of	differences	in	functional	connectivity	largely	stem	from	EEG	

research	 looking	at	high	 frequency	gamma	oscillations	as	measured	with	EEG	or	MEG	

(Brock	et	al.,	2002).	With	fMRI	we	can	only	look	at	changes	at	a	very	low	frequency	and	
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there	 is	 a	 very	 real	 possibility	 that	 higher	 frequency	 network	 characteristics	will	 not	

overlap	with	the	low	frequency	networks	we	can	image	with	functional	MRI.	EEG	provides	

a	less	invasive	and	cheaper	alternative	to	fMRI.	Obviously	the	spatial	resolution	is	not	as	

high	 but	 it	 does	 allow	 more	 fine-grained	 temporal	 analysis	 and	 is	 more	 practical	 to	

implement.	 Unfortunately,	 there	 is	 little	 information	 in	 the	 literature	 on	 baseline	

differences	in	network	topology	in	autism	as	assessed	with	EEG.	Most	studies	to	date	have	

focused	 on	 spectral	 density	 asymmetries	 and	 not	 connectivity	 (Burnette	 et	 al.,	 2011;	

Stroganova	 et	 al.,	 2007).	 Thus,	 we	 decided	 to	 also	 add	 a	 resting-state	 recording	 to	 a	

planned	 EEG	 study	 to	 assess	 potential	 differences	 in	 functional	 brain	 organization	

ourselves.		

	

Unfortunately,	our	results	from	Chapter	5	do	not	provide	a	clear	answer	to	the	question	

of	 whether	 autism	 is	 mostly	 characterized	 by	 any	 one	 specific	 theory	 of	 altered	

connectivity,	and	nor	does	 it	necessarily	disprove	any	previous	 findings	obtained	with	

fMRI.	In	fact,	the	main	picture	(both	from	present	results	as	from	previous	literature)	is	

that	people	with	autism	show	a	diverse	pattern	of	both	hyper-	and	hypo-connectivity	that	

is	not	specific	for	a	certain	type	of	connection,	and	hence	are	‘atypical’	in	a	broad	sense.	

As	a	classification,	overall	hypo-	or	hyper-	connectivity	of	two	subclasses	of	connections	

(long	vs.	short	range)	is	certainly	an	oversimplification	of	the	autistic	spectrum.	A	recent	

review	on	 brain	 connectivity	 in	 high	 functioning	 adults	with	 autism	 reaches	 a	 similar	

conclusion	(Vissers	et	al.,	2012).	The	current	models	of	local	versus	global	connectivity,	

general	hypo-connectivity	or	hyper-	connectivity	to	the	frontal	cortex	do	not	capture	the	

diversity	of	abnormal	functional	connectivity.	The	present	data	does	suggest	some	more	

detailed	aspects	of	connectivity	patterns	that	might	prove	a	promising	lead.	There	is	for	
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example	evidence	 for	 a	different	 and	possibly	 ‘confused’	 integration	of	 connectivity	 in	

frontal	and	pre-fontal	cortex,	where	we	observe	some	connectivity	differences	between	

both	groups.	Looking	at	the	characteristics	of	these	specific	networks	may	give	clearer	

answers	but	likely	with	a	limited	scope	in	terms	of	describing	autism	in	general.	Atypical	

characteristics	of	one	specific	network	are	at	best	only	related	to	a	specific	aspect	of	the	

autism	diagnosis	and	are	unlikely	to	cover	the	complete	spectrum	of	behaviours.		

	

Of	course,	the	present	findings	should	be	considered	preliminary	as	data	collection	is	still	

ongoing	and	present	results	are	only	based	on	a	relatively	small	sample.	Thus,	at	this	point	

they	should	mostly	be	considered	a	proof	of	concept,	showing	that	EEG	can	be	used	to	

measure	functional	brain	network	connectivity	in	individuals	with	autism.	

8.7 Hormones:	person	and	context	matter.	

Lastly,	sex	hormones	do	not	solely	influence	brain	morphology	early	on	they	also	play	a	

role	later	in	life	in	their	capacity	to	alter	brain	function	(Bethlehem	et	al.,	2013;	Bos	et	al.,	

2012)	(Figure	8.1	-	 label	8.7).	In	Chapters	6	and	7	we	describe	the	acute	effects	of	two	

prominent	 hormones:	 oxytocin	 and	 testosterone.	 In	 these	 chapters	 we	 show	 that	 the	

effects	 of	 administering	 these	 substances	 is	 very	 context	 and	 person	 dependent.	 For	

example,	 administering	 oxytocin	 affects	 individuals	 with	 high	 AQ	 scores	 to	 a	 higher	

degree	than	it	does	individuals	with	a	low	AQ	score	(Bethlehem,	Lombardo,	et	al.,	2017).	

We	 found	 a	 neurobiological	 network	 of	 cortical	 and	 subcortical	 brain	 regions	 that	 is	

strongly	 affected	 in	 a	 baseline	 rs-fMRI	 recording.	 Interestingly,	 this	 network	 largely	

covers	brain	regions	associated	with	social	communication,	pain	perception	and	reward	
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processing.	Indirectly,	this	might	be	the	underlying	framework	for	effects	we	observed	in	

an	earlier	oxytocin	administration	study	(Auyeung	et	al.,	2015).	In	that	study	we	showed	

that	oxytocin	improves	eye-contact	in	autistic	individuals	and	that	those	who	where	the	

strongest	affected	(e.g.	made	the	least	eye-contact	in	the	placebo	condition)	improved	the	

most.	 This	 is	 of	 course	 speculative,	 as	 ideally	 these	 elements	 would	 be	 studied	 in	 a	

concurrent	fashion	by	for	example	combining	eye-tracking	with	neuroimaging	to	see	if	

the	same	neural	networks	are	altered	in	that	specific	context.		

	

Furthermore,	the	imaging	study	we	presented	here	only	included	individuals	without	a	

diagnosis	 and	we	 can	 not	 emphasize	 enough	 that	 it	 is	 highly	 likely	 that	 these	 effects	

fluctuate	with	individual	variability	that	might	not	necessarily	be	the	same	in	individuals	

with	an	autism	diagnosis.	Previous	literature	has	already	shown	that	baseline	differences	

in	the	oxytocin	system	of	individuals	with	autism	might	be	expected	(Modahl	et	al.,	1998).	

To	 study	 this	 we	 also	 recently	 finished	 collecting	 a	 smaller	 imaging	 dataset	 of	 age-

matched	women	with	a	diagnosis	and	plan	to	analyse	this	in	the	same	fashion.	Following	

the	 exploratory	 positive	 correlation	 reported	 in	 Chapter	 6	we	 expect	 to	 find	 an	 even	

stronger	effect	for	women	on	the	autism	spectrum	as	their	AQ	will	likely	be	much	higher.	

Should	this	effect	not	exist	in	the	autism	group	it	could	be	a	clear	sign	that	there	are	indeed	

fundamental	baseline	differences	in	the	oxytocin	system	of	individuals	with	autism.	

	

In	 addition,	 as	 outlined	 in	 Chapter	 6,	 very	 little	 is	 known	 about	 the	 neurobiological	

interaction	between	oxytocin	and	biological	sex	let	alone	other	hormones.	In	the	study	we	

presented	here	we	controlled	for	menstrual	cycle	effects	but	given	that	there	is	evidence	

of	 hormone	 modulating	 effects	 within	 the	 autistic	 spectrum	 by	 other	 sex	 steroid	
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hormones	 (Auyeung	 et	 al.,	 2013),	 it	 would	 be	 interesting	 to	 explore	 whether	 the	

administration	of	oxytocin	also	has	a	downstream	effect	on	other	hormones	directly.	The	

study	presented	in	Chapter	6	also	collected	saliva	samples	throughout	the	recording	(e.g.	

before	 OT	 administration,	 10	 minutes	 after	 OT	 administration	 and	 at	 the	 end	 of	 the	

scanning	session).	For	a	future	project	we	plan	to	analyse	whether	oxytocin	interacts	with	

testosterone	(Crespi,	2016;	Jaeggi,	Trumble,	Kaplan,	&	Gurven,	2015;	Weisman,	Zagoory-

Sharon,	&	Feldman,	2014).	

	

Testosterone	is	a	hormone	one	might	not	directly	associate	with	positive	effects	on	social	

cognition	 however	 it	 has	 previously	 been	 shown	 that	 depending	 on	 the	 context	 its	

outcome	can	be	positive	(Van	Honk	et	al.,	2012).	Furthermore,	if	we	indeed	assume	that	a	

surge	 in	 prenatal	 testosterone	 influences	 brain	 development	 to	 increase	 autism	 risk	

(Baron-Cohen,	2002;	Baron-Cohen	et	al.,	2015)	it	could	be	argued	that	individuals	with	

autism	might	 in	 fact	 be	 somewhat	 desensitized	 to	 testosterone	 later	 in	 life.	 This	 is	 of	

course	very	speculative,	and	overexposure	early	in	life	could	cause	both	desensitization	

(e.g.	by	triggering	an	adaptive	response	of	decreasing	the	number	of	androgen	receptors)	

or	trigger	a	hypersensitization	(e.g.	by	triggering	an	increase	in	androgen	receptors	to	fit	

the	over	abundance).	This	it	not	a	question	that	can	be	answered	within	the	current	study.	

What	 we	 do	 however	 show	 is	 that	 testosterones	 effects	 are	 also	 very	 dependent	 on	

context	and	previous	studies	had	already	shown	that	 its	effects	are	also	modulated	by	

individual	variability	such	as	prenatal	exposure	to	testosterone	(Montoya	et	al.,	2013;	van	

Honk,	Schutter,	et	al.,	2011).	Interestingly	though,	both	in	the	present	study	(Chapter	7)	

as	well	as	 in	previous	work	(Bos	et	al.,	2016),	effects	on	functional	connectivity	varied	

with	context	and	appeared	independent	of	prenatal	exposure	as	measured	with	2D-4D	
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digit-ratio.	Clearly,	more	work	is	needed	to	disentangle	the	complex	interaction	between	

context,	testosterone	administration,	prenatal	testosterone	exposure	and	autism.	Ideally	

this	 is	 achieved	 by	 using	 longitudinal	 data	 where	 prenatal	 testosterone	 levels	 are	

quantified	more	clearly	(Lombardo,	Ashwin,	Auyeung,	Chakrabarti,	Lai,	et	al.,	2012).	 It	

would	 be	 interesting	 for	 future	 studies	 to	 attempt	 to	 replicate	 effect	 of	 testosterone	

administration	 in	 this	 cohort	 to	 get	 a	 clearer	 picture	 of	 the	 pre-natal	 and	 post-natal	

interaction	of	testosterone.	At	a	more	fundamental	level	one	could	explore	the	effects	of	

testosterone	exposure	on	gene-expression	 in	 for	example	animal	models	or	 iPSC	work	

Such	projects	are	currently	being	undertaken	by	other	members	of	our	lab.	

	

To	summarize	this	factor,	the	most	we	can	say	is	that	the	effects	of	hormones	influence	

brain	 function	 in	 a	 person-	 and	 context-dependent	manner.	 Although	 both	 hormones	

show	 promise	 as	 potential	 therapeutic	 target	 (whether	 by	 increasing	 eye-contact	 or	

reducing	an	element	of	social	anxiety/fear),	at	present	we	know	too	little	about	its	person	

and	 contextual	 variability	 to	 provide	 a	 general	 conclusion	 about	 its	 potential	 broad	

therapeutic	use.	Based	on	the	broad	literature	(Bartz	et	al.,	2011;	Bethlehem	et	al.,	2014,	

2013;	Meyer-Lindenberg,	2008;	Meyer-Lindenberg	et	al.,	2011;	Modi	&	Young,	2012)	it	

seems	plausible	to	assume	that	oxytocin	might	benefit	specific	individuals	on	the	autistic	

spectrum	 in	 particular	 contexts,	 but	 these	 need	 to	 be	 defined	 much	 more	 clearly	 as	

research	has	also	shown	that	its	administration	can	have	a	less	positive	effect	(De	Dreu,	

2011;	De	Dreu	et	al.,	2010;	De	Dreu,	Greer,	Handgraaf,	Shalvi,	&	Van	Kleef,	2012;	Miller,	

2013)	
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8.8 Conclusions	

This	 thesis	 has	 highlighted	 a	 few	 of	 the	 cogs	 in	 a	 complex	 set	 of	 mechanisms	 that	

ultimately	drive	human	behaviour.	We	showed	how	biological	sex	and	sex	hormones	sit	

on	top	of	a	causal	chain	that	goes	from	the	micro	level	(e.g.	genes)	to	the	macro	level	(e.g.	

behaviour)	by	affecting	brain	morphology	and	function.	Furthermore,	within	this	causal	

chain	there	are	various	interactions	between	those	different	levels	of	organization.	For	

example,	genes	affect	brain	morphology,	while	sex	affects	genes	and	brain	morphology	

directly	 as	 well.	 These	 effects	 might	 not	 even	 be	 one	 directional	 (hence	 their	

representation	 in	 the	 framework	 overview	 as	 cogs).	 For	 example,	 hormones	 that	

influence	brain	function	could	over	time	also	influence	brain	morphology	indirectly.	All	

the	interactions	shown	in	the	present	work	simply	provide	points	where	this	causal	chain	

may	be	vulnerable	to	lead	to	atypical	development	and	highlight	the	need	for	integrative	

frameworks	that	includes	different	levels	of	analysis.	However,	as	is	the	case	in	hormone	

administration	 studies,	 they	 will	 hopefully	 also	 provide	 windows	 to	 not	 only	 better	

understanding,	but	ultimately	treatments	that	could	help	alleviate	symptoms.		
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A.1 Appendix	A:	Graph	theory	

	
 

	

The opening quote of this thesis was made over 500 years ago by Leonardo Da Vinci and neatly 

summarizes a key scientific concept that is rapidly gaining appreciation across a wide variety 

of scientific disciplines: network theory. The principle idea behind network theory is that it is 

possible to mathematically describe how different elements are interconnected. Studying the 

art of these networks can, in a sense, teach us to see and discriminate patterns in seemingly 

chaotic interactions and systems. Consequently, network theory has been used to describe and 

subsequently optimize a wide variety of complex systems. The most prominent examples are 

perhaps; social networks, communication networks, shipping networks, neural networks and 

even regulatory networks describing gene interactions.  Although there are numerous ways to 

quantify and describe properties of networks, one very prominent method is called graph 

theory. 

 

The foundation for graph theory dates back to the 18th century to a mathematical problem called 

the Seven Bridges of Königsberg. In this problem the challenge is to visit different parts of the 

city of Königsberg (now Kalinigrad), which are connected by seven bridges, by visiting each 

bridge exactly once. Around 1736 Leonhard Euler in essence founded graph theory by pointing 
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out, and later proving it mathematically, that the geographic starting point is irrelevant to solve 

the problem. Instead, one has to look at the exact way the elements are interconnected. By 

describing each part of the city as an element and the bridges as their connections he effectively 

described the mathematical structure that is now called a graph. In mathematical formulation 

elements are usually termed vertices or nodes and connections are termed edges, together 

making up a graph or network. Thus, in Euler’s original graph each bridge was represented by 

an edge and each landmass as a node. Traversing through a network while visiting each node 

and only using each connection once is now known as an Euler walk. Now, Euler showed that 

these walks are only possible if all nodes are connected and exactly zero or two of the nodes 

have an odd degree. Thus, in historical Kalinigrad no Euler walk would be possible. Once a 

graph is constructed or a network is known there are a number of different measures that can 

be used to describe its properties. The simplest type of graph or network is a binary one, where 

all vertices are either connected or not but the strength of their connection is irrelevant. For 

simplification, weighted or non-binary networks are often thresholded to create a binary or 

unweighted graph.  

 

In the studies presented in this thesis, functional and structural magnetic resonance imaging 

were used to reconstruct the functional and structural covariance networks respectively. 

Pearson correlation was used to estimate connectivity between different regions of the brain. 

Thus, in graph theoretical terms, brain regions represent the networks nodes and the 

correlational relation between them represents the connection of path between these nodes. 
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A.2 Graph	metrics	

As an initial step the most commonly used graph metrics were investigated as described below. 

Note that in mathematical notation, nodes are commonly referred to as vertices and relations 

between vertices as paths. These metrics are all implemented in the aforementioned Brain 

Connectivity Toolbox (Rubinov & Sporns, 2010) and are described in more detail elsewhere 

(Stam & Reijneveld, 2007) and (Newman, 2015). Some measures are computed at a global 

level (e.g. as an overall network property), some are computed at a local level (e.g. for each 

network node individually) and some are computed at both levels.  

 

A.2.1 Global	Measures	

 

Path length (L) is a measure that does not describe any actual physical path length but rather 

a virtual representation of the minimal number of edges that are on average needed to connect 

two vertices. For every vertex the average number of edges necessary to reach all other vertices 

constitute its path length (di,j) and is thus determined by:  

𝐿 =
1

𝑁(𝑁 − 1) 𝑑,,-
,,-∈?,,@-

	

	

 

Modularity (Q) indicates the extent to which the network is subdivided into modules of 

highly interconnected nodes, with relatively few connections between modules (Bullmore & 
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Sporns, 2009; Mej Newman, 2006). Randomised networks contain fewer modules and thus 

have lower modularity. 

 

Assortativity is represented by correlation coefficients between the degrees of all nodes on 

two opposite ends of an edge. A positive assortativity coefficient indicates that nodes tend to 

link to other nodes with the same or similar degree, i.e. high-degree nodes tend to connect to 

nodes that also have high degrees. Random networks have lower assortativity. Assortativity is 

a special case of modularity 

 

Transitivity (T) is a metric that is largely adopted from analysis of social network. A 

relation is said to be transitive if it implies that a[relation]b and b[relation]c automatically 

means a[relation]c. In network analysis the relation is a connection between nodes. Thus there 

is a transitive connection if vertex a connects to vertex b, vertex b connects to vertex c and 

vertex a connects to vertex c. In essence these 3 elements form a fully connected (triangular) 

subgraph. The metric is provided by taking the ratio of triangles (e.g. fully connected pairs of 

3) against triplets (e.g. only partially connected pairs of 3), the number of triangles is multiplied 

by a factor 3 do incorporate the fact that there are always three nodes involved. It should be 

noted that transitivity is a special case of the clustering coefficient described in more detail 

below. 

	

Τ∆ =
3 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑎𝑡ℎ𝑠	𝑤𝑖𝑡ℎ	𝑙𝑒𝑛𝑔𝑡ℎ	2 
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Small-world coefficient (s) determines whether the studied network shows the 

characteristics of small-world networks: high clustering, but low path length. The small-world 

efficient was calculated as follows: 

𝜎 𝐺 =
𝐶V 𝐶W
𝐿V 𝐿W

 

 

In this formula, G is the network studied and R a corresponding random network. A network 

is considered small-world (Alexander-Bloch et al., 2010; Humphries, Gurney, & Prescott, 

2006) if s > 1. As random networks have both a lower clustering coefficients and a shorter 

path length, the resulting small world coefficient is also lower.  

 

Efficiency can be defined as local or global efficiency. Thresholding graphs can sometimes 

lead to parts of the network becoming disconnected. Local efficiency is then the efficiency of 

certain parts of the entire network and global efficiency is the overall efficiency of the network. 

When there are no isolated parts in the network local and global efficiency are the same. 

Sometimes however different modules can be defined based on path length and clustering 

coefficient. In this case local efficiency of the different modules can also be determined. The 

way to calculate efficiency for a certain set of vertices is almost the same as how average path 

length is determined. It is done by using the inverse of the distance: 

	𝐸 =
1

𝑁(𝑁 − 1)
1
𝑑,,-,,-∈?,,@-
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Cost-efficiency is calculated by subtracting the cost from the global efficiency, which results 

in a measure of the trade-off between cost and efficiency. As mentioned above, cost was 

defined as the number of existing edges as a fraction of all possible edges.  

 

A.2.2 Local	Measures	

Degree is perhaps the most fundamental metric in graph theory along with path length as most 

other measures are based on these two components. Degree is simply the number of of 

connections that a node has. The degree distribution (e.g. the probability distribution of 

degrees) is sometimes used as a global metric to determine if networks obtained from different 

groups show an overall shift in characteristic nodal connectivity. 

 

Clustering coefficient (C) Clustering coefficients are the number of nearest neighbours 

or connections (ei) of a vertex (i) relative to the maximum possible number of connections in 

the network: 

𝐶, =
2𝑒,

𝑣, 𝑣, − 1
 

where: 

2𝑒, = 𝑎,,-𝑎-,Z𝑎Z,,
-,Z

 

In this case ai,j is what is called the adjacency matrix that lists whether an edge exists between 

vertex i and j. The numerator (2𝑒,) in this formula thus represents the number of existing edges 

between a vertex i and all of its possible neighbours (j and m). This also includes the 
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connections between the neighbours themselves. The numerator (2𝑒,) thus represents the 

number of ‘clusters’ around vertex i. The denominator (𝑣, 𝑣, − 1 ) represents the degree of a 

vertex i, which is simply the maximum number of possible edges between i and its neighbours. 

The clustering coefficient is thus the ratio of the number of clusters to the number of edges.  

 

Betweenness centrality  is the fraction of all shortest paths in the network that pass through 

a certain node The betweenness of a vertex is normally defined as the number of shortest paths 

between pairs of other vertices that run through that vertex (Freeman, 1977). The betweenness 

of a vertex is thus calculated by taking a ratio of all shortest paths between two specific vertices 

that run through that specific vertex (nj,k(i)) to all shortest paths between those two vertices 

(nj,k). For the entire network an average of all vertices is computed. 

𝐵, =
𝑛-,((𝑖)
𝑛-,(-,(∈?,-@(

 

	

Eigenvector centrality is a measure used to determine the relative contribution of a node 

to the network. Nodes that have a high eigenvector centrality connect to other nodes that have 

high eigenvector centrality. In essence the nodes with the highest eigenvector centrality 

contribute most to the networks structure. This is a particularly interesting measure for brain 

network analysis as it might allow investigating of potentially important brain regions based 

on their embededness in the overall network structure. 
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Nodal efficiency or local efficiency is the global efficiency calculated for the 

neighbourhood of a specific node. Thus, it considers all directly connected nodes for a single 

node a separate network and computes the efficiency for this nodal centered ‘subgraph’. 
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Fig. B.1: Age and IQ of all three matched groups.  

Panel A shows the mean age at time of scan, panel B shows mean IQ for each group.  Error bars indicate standard 

deviation from the mean.  
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Table	B.1:	Information	on	scanner	site	and	matching	

All	scans	were	visually	inspected	by	two	independent	researchers	and	only	when	both	researchers	agreed	

were	 subjects	 included	 in	 subsequent	 analyses.	 After	 this	 initial	 quality	 control	 variance	 in	 cortical	

thickness	across	all	 subjects	was	also	analysed	and	subjects	 that	had	a	whole-brain	variance	 in	cortical	

thickness	 that	 was	 more	 than	 3	 standard	 deviations	 from	 the	 sample	 mean	 were	 also	 removed	 from	

subsequent	analysis.	After	this	quality	control	step	there	were	a	few	sites	that	only	contained	2	or	fewer	

subjects	(MaxMun,	Olin,	Pitt,	Stanford	and	Trinity),	in	order	to	minimize	the	effect	of	regressing	out	site,	

these	 sites	 were	 removed	 from	 subsequent	 analyses.	 Secondly,	 two	 sites	 had	 more	 than	 10	 subjects	

selectively	from	only	one	group	(Washington	University	and	Peking),	as	regressing	out	these	sites	would	

effectively	also	remove	potential	group	effects	these	sites	were	removed	from	further	analyses.	This	left	a	

total	of	218	subjects;	ADHD	(n=69,	age	=	9.99	±1.17,	IQ	=	107.95	±14.18),	autism	(n=62	age=10.07	±1.11,	

IQ	 =	 108.86	±16.94)	 and	NT	 (n=87,	 age	 =	 10.04	±1.13,	 IQ	 =	 110.89	±10.39).	Within	 the	 ADHD	 group	

subdivisions	 could	 be	 made	 between	 presentation	 types,	 namely;	 ADHD-Combined	 (n=38),	 ADHD-

Hyperactive/Impulsive	(n	=9)	and	ADHD-Inattentive	(n=22)	

 

B.2 Subcortical	Volumetric	and	Covariance	Differences	

We found a significant volume difference between the Neurotypical and ADHD group in the 

left putamen, left amygdala and right amygdala (p-value <0.025, uncorrected; only the right 

amygdala survived FDR correction). See also figure B1. We also found a volumetric difference 

KKI MaxMun NYU OHSU Olin Peking Pitt Stanford Trinity UCLA UM USM WashU Yale

NT 50 0 22 0 0 0 0 12 0 0 13 3 13 7

ADHD 12 0 52 22 0 35 0 0 0 0 0 0 0 0

ASD 13 5 27 6 4 0 1 12 1 15 17 1 0 5

KKI MaxMun NYU OHSU Olin Peking Pitt Stanford Trinity UCLA UM USM WashU Yale

NT 3 0 4 0 0 0 0 12 0 0 3 0 3 0

ADHD 0 0 13 5 0 5 0 0 0 0 0 0 0 0

ASD 3 3 2 0 2 0 0 11 0 5 11 0 0 1

KKI MaxMun NYU OHSU Olin Peking Pitt Stanford Trinity UCLA UM USM WashU Yale

NT 47 0 18 0 0 0 0 0 0 0 12 3 0 7

ADHD 12 0 40 17 0 0 0 0 0 0 0 0 0 0

ASD 10 0 25 6 0 0 0 0 0 10 6 1 0 4
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between the ADHD and Autism groups in left amygdala and right amygdala, p-value <0.025, 

uncorrected; here only left amygdala survived FDR correction). The construction of a brain 

covariance network that included both cortical and subcortical structures was not suitable given 

that subcortical structures have a large variability of volume compared with the homogeneity 

of cortical regions with the same area as obtained from our parcellation scheme. However, we 

have explored the potential volume covariance of subcortical structures among groups (Figures 

B3 and B4). Here, we found that the autism group had, compared with neurotypical individuals, 

a significantly reduced covariance between right amygdala and left & right thalamus and 

between right amygdala and left Pallidum. Interestingly, the amygdala had a significantly 

reduced degree in the autism group compared to the control group. The ADHD group showed 

a significant correlation reduction between left & right cerebellum and left & right putamen, 

between left caudate and right thalamus and between left accumbens and right accumbens. 

Comparing the autism and ADHD groups revealed significant differences between left 

putamen and left & right cerebellum and between left pallidum and right amygdala. However, 

due to the large number of comparison these differences did not survived FDR corrections. The 

notion of altered subcortical and cortical processing fits with the idea of network alterations 

being dependent on the specific network (B. A. Zielinski et al., 2012). Specifically, reduced 

Involvement of amygdala and thalamic regions in the autism group might contribute to the 

underconnectivity of the salience network reported by Zalienski and collesgues (2012). 

Furthermore, although this can not be thoroughly assessed with the present approach (e.g. due 

the nature of the parcellation at the cortical level) it would seem reasonable to assume that these 

subcortical alterations in both volume and covariance could contribute to alterations in cortical-
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subcortical coupling, specifically of the amygdala and striatal regions (Eisenberg, Wallace, 

Kenworthy, Gotts, & Martin, 2015). 

 

 

 

Fig.	B.2	Volumetric differences 

 

Fig.	B.3: Subcortical structural covariance networks 
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Fig. B.4: Gyrification index and degree distribution 

Panel A shows gyrification as a function of degree. Bars below the figure show the degree ranges where there is 

a significant difference between the respective groups. Panel B shows the cumulative degree distribution of the 

covariance network based on gyrification. Lines represent the proportion of nodes in the network with a degree 

higher than k (hubs) in each group. Bars below the figure represent the areas where there is a significant 

difference between the groups. 





	

	

	

Page	|	C-1	

Appendix	C Supplementary	Material	chapter	3	

C.1 1.	Neuroimaging	Data	

C.1.1 Discovery	dataset	

Overview	

A description of the dataset is provided in detail elsewhere (Bethlehem et al., 2017). Briefly, 

structural T1-weighted MPRAGE images were collected from two publicly available datasets: 

ABIDE (http://fcon_1000.projects.nitrc.org/indi/abide/) and ADHD-200 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/). From these datasets, we selected a subset 

of 3 diagnostic groups (autism, ADHD and neurotypical individuals) of males between the ages 

of 8 and 12 years old. The initial sample consisted of 348 eligible individuals (see below for 

details on sample matching and quality control). The structural T1-MPRAGE data were pre-

processed using Freesurfer v5.3 to estimate regional cortical thickness. The cortical thickness 

maps were automatically parcellated into 308 equally sized cortical regions of 500 mm2 that 

were constrained by the anatomical boundaries defined in the Desikan-Killiany atlas (Desikan 

et al., 2006; Romero-garcia et al., 2012). Individual parcellation templates were created by 

warping this standard template containing 308 cortical regions to each individual MPRAGE 

image in native space. A key advantage of warping of the segmentation map to the native space 

relates to the attenuation of possible distortions from warping images to a standard space that 

is normally needed for group comparisons. Lastly, average cortical thickness was extracted for 

each of the 308 cortical regions in each individual participant.  
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C.1.2 Quality	control	and	matching	

Details of the quality control and matching are described in detail elsewhere (Bethlehem et al., 

2017). In short, scans were visually checked by two independent researchers. When both 

researchers independently agreed subjects were included in the final sample. Variance in 

cortical thickness across all subjects was also analysed and subjects with variance in global 

cortical thickness that was more than 3 standard deviations from the sample mean were 

removed from subsequent analysis. After this last step, there were a few sites that only 

contained 2 or fewer subjects (MaxMun, Olin, Pitt, Stanford and Trinity) and, to minimize the 

effect of regressing out site, these sites were removed from subsequent analyses. Secondly, two 

sites had more than 10 subjects selectively from only one group (Washington University and 

Peking), as regressing out these sites would effectively also remove potential group effects 

these sites were removed from further analyses. This left a total sample size of 218 subjects: 

ADHD (n=69, age = 9.99 ±1.17, IQ = 107.95 ±14.18), autism (n=62 age=10.07 ±1.11, IQ = 

108.86 ±16.94) and controls (n=87, age = 10.04 ±1.13, IQ = 110.89 ±10.39).  

C.1.3 Validation	Dataset	

In order to validate our findings, we used two independent datasets of children with and without 

autism in a similar age range from the second release of ABIDE 

(http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html). Specifically, we utilized the 

data collected at Georgetown University (Validation 1) and Kennedy Krieger Institute 

(Validation 2) that were not included in the first release of ABIDE and consists of a young 

cohort of children with and without autism. Structural T1-weighted MPRAGE images were 
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pre-processed with the same pipeline as described above. Subjects that had an overall variance 

in CT that was more than 3 standard deviations from the group mean were removed from 

further analysis. The final sample for validation consisted of 102 subjects for Validation 1 

[autism (n=48, age=10.97±1.53) and controls (n=54, age=10.43±1.71)] and 21o subjects for 

Validation 2 [autism (n=56, age=10.32±1.51) and controls (n=154, age=10.34±1.20)]. 

C.2 PLSR	analysis	

C.2.1 Overview	

The	 following	 describes	 a	 simplified	 overview	 of	 PLSR	 and	 the	 difference	 between	 the	

SIMPLS	and	the	NIPALS	algorithm.		

Partial least squares regression or PLSR is a data reduction technique closely related to 

principal component analysis (PCA) and ordinary least squares (OLS) regression. Here we use 

the SIMPLS algorithm (de Jong, 1993), where the independent variable matrix (X) and the 

dependent variable (Y) is centred giving rise to X0 and Y0 respectively. The first component is 

then weighted by w1 and q1 to calculate factor scores (or component scores) T1 and U1.  

 

This T1 is the weighted sum of the centred independent variable: 

T1 = X0w1 + E1         (eqn 1) 

 

And U1 is the weighted sum of the centred dependent variable: 
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U1 = Y0q1 + E2         (eqn 2)  

      

The weights and the factors scores are calculated to ensure the maximum covariance between 

T1 and U1, which is a departure from regular PCA where the scores and loadings are calculated 

to explain the maximum variance in X0. 

	

So U1  ~ T1         (eqn 3) 

Or, 

U1  = B0 + B1T1 + E4        (eqn 4) 

 

Or, 

 

U1  = B0 + B1(X0w1) + E5       (eqn 5) 

	

In the SIMPLS algorithm provides an alternative where the matrices are not deflated by the 

weights when calculating the new components, and, as a result, it is easier to interpret the 

components based on the original centred matrices.  

As the components are calculated to explain the maximum covariance between the dependent 

and independent variable, the first component need not explain the maximum variance in the 

dependent variable. However, as the number of components calculated increases, they 

progressively tend to explain lesser variance in the dependent variable.  

	

Here we present the rationale for choosing genes with both positive and negative weights: 
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From equations 2 and 5 above, we know that: 

 

Y0q1  = B0 + B1(X0w1) + E5       (eqn 6) 

 

This can be rewritten as: 

 

Y0q1  ~ B1(X0w1)         (eqn 7) 

  

And if both B1 and q1 are positive which is the case in our analyses, then,  

 

Y0  ~ X0w1          (eqn 8) 

 

In our dataset: 

Y0 is a px1 vector of ΔCT with positive and negative values. 

q1 is a 1x1 vector of weight for the first PLSR component.  

B1 is the regression coefficient. 

X0 is a pxn matrix of gene expression, where p is the number of cortical regions, and n is the 

number of genes for which gene expression is calculated. This has been scaled and normalized 

to have positive and negative values. Positive values indicate that the gene is overexpressed 

compared to the mean gene expression, and negative values indicate that the gene is 

underexpressed compared to the mean gene expression.  

w1 is a nx1 vector of weights for the first PLSR component.  
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Y0 can be both positive or negative (ΔCT is both positive or negative, as some regions are 

thicker in individuals with autism compared to controls and vice versa). Similarly, both X0 and 

w1 are positive or negative.  

This gives us the following possibilities: 

1. For a negative value in Y0, either the equivalent X0 value or the equivalent w1 value 
must be negative. 

2. For a positive value in Y0, both the equivalent values in X0 and w1 must be either 
positive or negative.  
 

In other words, if the weight of the gene is positive, having a higher than average gene 

expression (positive X0) contributes to positive ΔCT (i.e. greater CT in autism compared to 

controls), whereas having a lower than average gene expression (negative X0) contributes to 

negative ΔCT. Similarly, if the weight of the gene is negative, having a higher than average 

gene expression contributes to negative ΔCT, whereas having a lower than average gene 

expression contributes to positive ΔCT. So, the sign of the weights alone cannot tell us if the 

gene contributes to thicker or thinner cortex in autism compared to controls. It is the 

combination of both the weights and the gene expression level that can be informative. 

However, as gene expression and ΔCT varies considerably across the regions tested, we used 

genes with both positive and negative weights, that were significant FDR correction in our 

enrichment analyses.  
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C.3 PLSR	Analysis:	Autism	Data	

C.3.1 Discovery	dataset	

Details of the PLSR analysis are described in the main manuscript, Supplementary Table S1 

below lists the descriptive cross-validation statistics of the full 35-component model and 

Supplementary Figure S1 shows the amount of explained variance for each component 

included in the final analysis. Only the first component showed a significant effect (p = 0.009). 

We also conducted KEGG pathway enrichment analysis, details of which are provided in 

Supplementary Table C.2.  

	

Table	C.1:	35	component	cross-validation	

COMP	 PRESS	 RSS	 Q2	 Q2cum	 RMSE	

1	 2.97E+02	 3.07E+02	 0.0336	 0.0336	 0.9984	
2	 2.65E+02	 2.69E+02	 0.0165	 0.0496	 0.9350	
3	 2.08E+02	 2.32E+02	 0.1003	 0.1449	 0.8673	
4	 1.65E+02	 1.79E+02	 0.0813	 0.2145	 0.7633	
5	 1.35E+02	 1.45E+02	 0.0736	 0.2722	 0.6867	
6	 1.17E+02	 1.25E+02	 0.0629	 0.3180	 0.6376	
7	 8.84E+01	 9.84E+01	 0.1013	 0.3871	 0.5652	
8	 6.88E+01	 6.90E+01	 0.0031	 0.3890	 0.4732	
9	 4.66E+01	 5.20E+01	 0.1033	 0.4521	 0.4109	
10	 4.15E+01	 4.28E+01	 0.0303	 0.4687	 0.3726	
11	 3.09E+01	 3.24E+01	 0.0474	 0.4939	 0.3243	
12	 2.51E+01	 2.63E+01	 0.0457	 0.5170	 0.2921	
13	 2.09E+01	 2.16E+01	 0.0300	 0.5315	 0.2647	
14	 1.58E+01	 1.56E+01	 -0.0157	 0.5241	 0.2248	
15	 1.11E+01	 1.08E+01	 -0.0268	 0.5114	 0.1876	
16	 7.76E+00	 7.68E+00	 -0.0107	 0.5062	 0.1579	
17	 6.18E+00	 5.97E+00	 -0.0356	 0.4886	 0.1392	
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18	 4.44E+00	 4.43E+00	 -0.0027	 0.4872	 0.1199	
19	 3.41E+00	 3.32E+00	 -0.0252	 0.4743	 0.1039	
20	 2.71E+00	 2.67E+00	 -0.0158	 0.4659	 0.0931	
21	 2.11E+00	 1.83E+00	 -0.1505	 0.3856	 0.0772	
22	 1.53E+00	 1.31E+00	 -0.1671	 0.2829	 0.0653	
23	 9.77E-01	 8.81E-01	 -0.1093	 0.2045	 0.0535	
24	 7.11E-01	 6.07E-01	 -0.1703	 0.0690	 0.0444	
25	 4.14E-01	 3.71E-01	 -0.1157	 -0.0386	 0.0347	
26	 2.77E-01	 2.71E-01	 -0.0244	 -0.0640	 0.0296	
27	 1.99E-01	 1.79E-01	 -0.1095	 -0.1805	 0.0241	
28	 1.31E-01	 1.13E-01	 -0.1599	 -0.3692	 0.0191	
29	 8.53E-02	 6.65E-02	 -0.2834	 -0.7572	 0.0147	
30	 5.07E-02	 4.42E-02	 -0.1459	 -1.0136	 0.0120	
31	 4.12E-02	 3.10E-02	 -0.3285	 -1.6751	 0.0100	
32	 2.83E-02	 2.04E-02	 -0.3876	 -2.7119	 0.0081	
33	 1.81E-02	 1.41E-02	 -0.2831	 -3.7627	 0.0068	
34	 1.24E-02	 9.81E-03	 -0.2688	 -5.0428	 0.0056	
35	 7.48E-03	 5.97E-03	 -0.2536	 -6.5753	 0.0044	

For	 each	 component	 the	 Predictive	 Error	 Sum	 of	 Squares	 (PRESS),	 Residual	 Sum	 of	 Squares	 (RSS),	 cross	

validated	PRESS	(Q2),	the	cumulative	Q2	and	the	Root	Mean	Square	of	the	Error	(RMSE)	are	provided.	
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Figure C.1: Variance in gene expression explained by components in the Discovery dataset 

	

Variance	explained	for	all	13	components	included	in	the	final	model.	Only	components	1,	3,	4	and	6	explained	

more	than	10%	of	the	total	variance	individually,	and	were	thus	selected	for	further	analyses.	Of	these	4	only	

component	1	explained	a	significant	proportion	of	the	variance	in	ΔCT.		

Table	C.2:	Kegg	2016	Pathway	analysis	for	PLSR1	

Term	 Overlap	 P-value	 Adjusted	P-value	 Z-score	

Retrograde	endocannabinoid	signaling	 29/101	 8.64092E-07	 0.000121837	 -1.912944439	

GABAergic	synapse	 27/88	 4.79644E-07	 0.000121837	 -1.856183708	

Adrenergic	signaling	in	cardiomyocytes	 36/148	 3.5192E-06	 0.000330805	 -1.809256835	

Morphine	addiction	 25/91	 1.13401E-05	 0.000799478	 -1.774306875	

Dopaminergic	synapse	 29/129	 0.00013772	 0.006472825	 -1.761079175	

HIF-1	signaling	pathway	 25/103	 0.000107567	 0.006066762	 -1.73577233	

Nicotine	addiction	 13/40	 0.000234762	 0.009457564	 -1.56949222	

Serotonergic	synapse	 25/112	 0.000432338	 0.015239928	 -1.69105338	

Circadian	entrainment	 22/95	 0.000547828	 0.01716529	 -1.71333288	

Oxytocin	signaling	pathway	 31/158	 0.001019701	 0.028755556	 -1.73576073	

Renin	secretion	 16/64	 0.001271626	 0.032599873	 -1.522988352	

Pathways	in	cancer	 62/397	 0.003043863	 0.053648094	 -1.709378099	



C-10	 Supplementary	Material	chapter	3	

	

	Page	|	C-10	

	

C.3.2 Validation	dataset	

For the two validation datasets, we conducted the same analysis.  For Validation1, the cross-

validation analysis identified that 15 components provide the best model fit. For validation 2, 

the cross-validation analysis identified that 16 components provide the best model fit.  Only 

the first component explained a significant amount of variance (P< 10-14) in both the validation 

datasets, and was thus analyzed further. As was the case in the discovery dataset the first 

component in both the datasets was significantly associated with the GO term “Synaptic 

Transmission”. The Variance explained by the first six components in both the validation 

datasets are provided in Supplementary Figure C.2.  

	
Figure C.2: Variance in gene expression explained by the first six components in the two Validation datasets 

	

Only	the	first	component	in	both	the	datasets	significantly	explained	variance	in	ΔCT.	Subsequent	components	
all	explained	less	than	10%	of	the	variance	in	gene	expression.		

	

In comparison with the Discovery dataset, both the validation datasets also had a high, 

significant correlations in the gene loadings (Supplementary Figure C.3)  
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Figure C.3: Correlations between gene loadings in all three datasets 

Correlations between the gene loadings provided for all three datasets. Panel A provides the correlations between 

the Discovery and Validation 1 datasets. Panel B provides the correlations between the Discovery and Validation 

2 datasets. Panel C provides the correlation between the two validation datasets. Only the correlations in ΔCT 

between the two validation datasets was significant and positive, explaining the negative correlation in gene 

loadings between the Discovery and two validation datasets.  

	

We also conducted KEGG based pathway enrichment for the two validation datasets using 

Enrichr. Details are provided in Supplementary Tables C.4 and C.5.  
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Table	C.3:	Top	10	pathways	(Validation	1)	

Term	 Overlap	 P-value	 Adjusted	P-value	 Z-score	

Adrenergic	signaling	in	cardiomyocytes	 72/148	 1.142E-04	 0.0331	 -1.8592	

Oxytocin	signaling	pathway	 73/158	 7.157E-04	 0.0899	 -1.9448	

Long-term	potentiation	 35/66	 9.300E-04	 0.0899	 -1.8231	

MAPK	signaling	pathway	 109/255	 1.521E-03	 0.1103	 -1.9214	

Glioma_Homo	sapiens	 33/65	 3.279E-03	 0.1310	 -1.9054	

Retrograde	endocannabinoid	signaling	 48/101	 2.699E-03	 0.1310	 -1.8263	

mTOR	signaling	pathway	 31/60	 3.048E-03	 0.1310	 -1.7946	

cAMP	signaling	pathway	 85/199	 4.792E-03	 0.1310	 -1.7119	

Taste	transduction	 40/83	 4.315E-03	 0.1310	 -1.6758	

Morphine	addiction	 43/91	 4.970E-03	 0.1310	 -1.5714	

Table	C.4:	Top	10	pathways	(Validation	2)	

Term Overlap P-value 
Adjusted P-
value Z-score 

Retrograde endocannabinoid signaling 78/101 1.34E-05 0.00 -1.94 

Rap1 signaling pathway 149/211 2.15E-05 0.00 -1.94 

Oxytocin signaling pathway 114/158 4.36E-05 0.00 -1.92 

Glutamatergic synapse 84/114 1.31E-04 0.01 -1.86 

Circadian entrainment 71/95 2.06E-04 0.01 -1.80 

Long-term potentiation 52/66 1.47E-04 0.01 -1.75 

Thyroid hormone signaling pathway 86/118 2.07E-04 0.01 -1.70 

Glioma 50/65 5.60E-04 0.01 -1.75 

cAMP signaling pathway 136/199 5.03E-04 0.01 -1.74 

Adrenergic signaling in cardiomyocytes 104/148 4.77E-04 0.01 -1.68 

Tables	C.3	and	C.4	provide	the	top	10	pathways	for	the	Validation	analyses.	We	find	an	enrichment	for	similar	

neural	 pathways	 between	 the	 three	 datasets	 (Oxytocin	 signalling	 pathway,	 retrograde	 endocannabinoid	

signalling,	 morphine	 addiction,	 circadian	 entertainment,	 and	 different	 neurotransmitter	 signalling	

pathways).	
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C.3.3 Male	only	analysis	

We also investigated if the including only males in either of the two Validation cohort will 

improve the correlations in ΔCT, gene scores, and gene loadings between the Discovery and 

the Validation. We conducted this analysis using Validation 2 (KKI) as it had more number of 

male participants than the Validation 1 dataset. We note that the correlations in ΔCT, gene 

scores, and gene loadings between the Discovery and the males-only ΔCT were similar to the 

correlations when males and females were included in Validation 2 (Supplementary Figure 

C.4). Hence, the inclusion of females does not seem to alter the results.  

	
Figure C.4: Correlations between ΔCT, gene scores and gene loadings between the Discovery and the males-only 

Validation 2 

C.4 Von	Economo	profiling	

The spatial profile of the transcriptionally downregulated genes in the autism were examined 

using a regional map based on the cytoarchitectonic criterion of Von Economo (Von Economo 

and Koskinas, 2008). In his seminal work, Von Economo described five fundamental types of 
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cortical structures: granular primary motor cortex (class 1), frontal granular association cortex 

(class 2), parietal homotypical association cortex (class 3), dysgranular secondary sensory 

cortex (class 4), agranular primary sensory cortex (class 5). Allocortex (class 6) and insular 

cortex (class 7) were added due to their particular cytoarchitectonical characteristics (Whitaker 

et al., 2016; Zilles and Amunts, 2012). The average expression of all significant genes in the 

first PLSR component was calculated for each class (FDR adjusted P-values < 0.05). A non-

parametric permutation test was applied to assess whether gene expression values were 

different from 0 in each class. A reference distribution was created by computing the gene 

expression values across Von Economo classes for a random subset of genes (10,000 

permutations). The two tails of the resulting distribution were used to retain or reject the null 

hypothesis of an average gene expression equal to 0. Von Economo profiling analysis for the 

two validation datasets are provided in Supplementary Figure C.5. 



C.5	PLSR	Analysis:	ADHD	data	 C-15	

	

	 Page	|	C-15	

	
Figure C.5: Von Economo Expression Z-Scores of the two validation datasets 

Von Economo expression profiles largely resemble the pattern of over-expression in association cortices observed 

in the discovery dataset. The validation datasets reveals a significant over-expression of the PLSR1 in classes 2 

and 3 (association cortices), as well as in the insular cortex (class 7). On the other hand, Class 1 and 5 (primary 

cortices) and Class 6 (limbic regions) show a significant PLSR1 under-expression. 

C.5 PLSR	Analysis:	ADHD	data	

To investigate if our results were autism specific we also performed a PLSR analysis on the 

cortical thickness difference between a matched group of children with ADHD (matched on 

age, IQ and scanner site across all three groups) and the same neurotypical control group used 

in the main study. We used the exact same pipeline as described in the main manuscript. Cross-
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validation results of the initial 35-component PLSR model are listed in Supplementary Table 

C.6. It is immediately clear that this model does not provide a good fit for the ADHD ΔCT as 

the cross-validated cumulative Q2 does not show a clear peak. Although there are three 

components that explain more than 10% of the variance each none of these components are 

significantly associated with the ΔCT. For a full comparison, we nonetheless performed 

pathway and ontology analyses for those three components revealed no significant pathways 

or biological processes associated with genes that passed FDR correction in each PLSR 

component. We did not proceed with further enrichment analyses.  

Table	C.5:	PLS	35	component	model	for	the	ADHD-controls	CT	difference		

COMP	 PRESS	 RSS	 Q2	 Q2cum	
1	 3.14E+02	 3.07E+02	 -0.0239	 -0.0239	
2	 2.98E+02	 2.84E+02	 -0.0481	 -0.0732	
3	 2.66E+02	 2.57E+02	 -0.0384	 -0.1144	
4	 1.89E+02	 2.04E+02	 0.0744	 -0.0314	
5	 1.56E+02	 1.65E+02	 0.0570	 0.0273	
6	 1.36E+02	 1.43E+02	 0.0529	 0.0787	
7	 1.26E+02	 1.18E+02	 -0.0634	 0.0203	
8	 8.28E+01	 7.89E+01	 -0.0492	 -0.0278	
9	 6.62E+01	 6.87E+01	 0.0356	 0.0087	
10	 6.54E+01	 6.11E+01	 -0.0700	 -0.0606	
11	 5.03E+01	 5.36E+01	 0.0603	 0.0033	
12	 4.29E+01	 4.35E+01	 0.0120	 0.0153	
13	 4.01E+01	 3.84E+01	 -0.0423	 -0.0264	
14	 3.02E+01	 2.87E+01	 -0.0548	 -0.0826	
15	 2.51E+01	 2.39E+01	 -0.0517	 -0.1385	
16	 2.06E+01	 1.88E+01	 -0.0949	 -0.2466	
17	 1.58E+01	 1.51E+01	 -0.0463	 -0.3044	
18	 1.30E+01	 1.23E+01	 -0.0620	 -0.3852	
19	 1.05E+01	 9.71E+00	 -0.0819	 -0.4986	
20	 7.50E+00	 6.74E+00	 -0.1126	 -0.6673	
21	 5.64E+00	 5.49E+00	 -0.0268	 -0.7120	
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22	 4.64E+00	 3.96E+00	 -0.1713	 -1.0052	
23	 3.28E+00	 3.06E+00	 -0.0720	 -1.1496	
24	 2.51E+00	 2.01E+00	 -0.2496	 -1.6861	
25	 1.63E+00	 1.31E+00	 -0.2463	 -2.3476	
26	 1.04E+00	 9.13E-01	 -0.1341	 -2.7965	
27	 7.33E-01	 6.50E-01	 -0.1273	 -3.2798	
28	 5.68E-01	 4.95E-01	 -0.1480	 -3.9132	
29	 4.07E-01	 3.23E-01	 -0.2594	 -5.1879	
30	 2.67E-01	 2.36E-01	 -0.1313	 -6.0006	
31	 2.01E-01	 1.53E-01	 -0.3138	 -8.1973	
32	 1.16E-01	 9.63E-02	 -0.2034	 -10.0677	
33	 5.71E-02	 5.02E-02	 -0.1358	 -11.5707	
34	 3.41E-02	 2.96E-02	 -0.1514	 -13.4742	
35	 1.85E-02	 1.67E-02	 -0.1073	 -15.0269	

	

For	 each	 component	 the	 Predictive	 Error	 Sum	 of	 Squares	 (PRESS),	 Residual	 Sum	 of	 Squares	 (RSS),	 cross	

validated	PRESS	(Q2)	and	the	cumulative	Q2	are	provided.	

C.6 Gene	modules	and	enrichment	analyses	

C.6.1 Transcriptional	dataset	and	adult	gene	co-expression	modules		

The following describes the analyses conducted in Parikshak et al., 2016. We also outline our 

rationale for using these datasets in the present study. 

		

Briefly, rRNA-depleted RNA sequencing was conducted using cortical brain tissue samples 

from 48 autism donors and 49 neurotypical controls. Differential gene expression (DGE) 

identified 1143 dysregulated genes in the autism cortex samples compared to the control cortex 

samples of which 584 genes were upregulated and 558 genes were downregulated in the autism 

cortex. This dataset comprises of 13 autism donors and 14 control donors that overlap with 
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Gandal et al., 2016 due to the inclusion of data from Voineagu et al., 2011. DGE analyses were 

performed using gene expression levels that have been normalized for gene length, library size, 

and G+C content. DGE was calculated using a linear mixed effects regression model where 

individual donor identifier was treated as a random effect, and age, sex, brain region, and 

diagnosis were treated as fixed effects. Genes were said to be differentially expressed if they 

had a Benjamini-Hochberg FDR corrected P < 0.05. In our analyses, we used genes and 

associated P-values and fold difference from Supplementary Table 2 from Parikshak et al., 

2016 using the cortex-only dataset. We defined genes as being transcriptionally dysregulated 

if they had a Benjamini-Hochberg FDR corrected P-value < 0.05. In this subset of significant 

genes, genes were downregulated if they had a log2(Fold-change) < 0, and similarly, they were 

upregulated if they had a log2(Fold-change) > 0. Downregulated genes were significantly 

enriched for pathways involved in synaptic transmission and genes expression in neurons. 

		

Weighted	 gene	 co-expression	 modules	 were	 constructed	 using	 the	 R	 package	

weighted	 gene	 co-expression	 network	 analyses	 (WGCNA)	

(https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/)	

after	 bootstrapping	 100	 times.	 Modules	 significantly	 associated	 with	 a	 diagnosis	 of	

autism	were	 identified	using	a	 linear	mixed	effects	regression	analyses,	using	the	 first	

principal	component	of	each	module	against	diagnosis,	age,	sex,	and	brain	region.	WGCNA	

is	 an	 excellent	 data-reduction	 technique,	 that	 utilizes	 gene	 co-expression	 patterns	 to	

construct	weighted	co-expression	network	modules.	This	identifies	clusters	of	genes	with	

similar	expression	 that	 are	usually	enriched	 for	 specific	biological	pathways.	Here	we	
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focussed	on	six	gene	co-expression	modules	constructed	from	the	entire	cortical	gene-

expression	profile	that	are	associated	with	autism:	M9,	M19,	and	M20	that	are	enriched	

for	 upregulated	 genes	 in	 autism,	 and	 M4,	 M10,	 and	 M16	 that	 are	 enriched	 for	

downregulated	genes	in	autism.	All	six	modules	show	significant	cell-type	enrichment.	

Further,	the	downregulated	modules	are	all	enriched	for	synaptic	function	and	neuronal	

genes	 and	 the	 upregulated	modules	 are	 enriched	 for	 inflammatory	 pathway	 and	 glial	

function.	 As	 we	 had	 identified	 a	 significant	 enrichment	 of	 synaptic	 function	 in	 the	

significant	 PLSR1	 genes	we	 hypothesized	 that	 genes	would	 be	 enriched	 for	 the	 three	

downregulated	modules.	This	further	supported	the	enrichment	of	the	PLSR1	genes	for	

the	transcriptionally	dysregulated	genes	in	the	autism	post-mortem	cortex.		

	

C.6.2 Validation	Transcriptional	dataset	

The following describes the analyses conducted in Gandal et al., 2016.  

	

DGE analysis was conducted using raw microarray gene expression data from cortical samples 

from 33 autism donors and 38 control donors. Three autism microarray datasets were used from 

three different studies: (Chow et al., 2012; Garbett et al., 2008; Voineagu et al., 2011). Samples 

from the Voineagu et al., 2011 overlapped with the Parikshak et al., 2016 dataset, making this 

a quasi-independent dataset.  DGE was calculated using the log fold change values using the 

Limma package after accounting for biological covariates (age, sex, brain region) and technical 

covariates (such as experimental batch, post-mortem interval, pH etc) for each study separately. 

Finally, meta-analysis of the log fold change values were conducted using a random effects 
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model. Approximately 10,000 genes were retained after filtering for genes that were present 

across all three studies. As mentioned above, we identified genes as being downregulated if 

they had a log(Fold-change) < 0, and an Benjamini-Hochberg FDR corrected P-value < 0.05.  

We identified 830 transcriptionally dysregulated genes, and 464 genes that were downregulated 

in the autism postmortem cortex.  

	

C.6.3 Developmental	gene	co-expression	modules		

The following describes the analyses conducted in Parikshak et al., 2013. 

 

WGCNA network analyses were conducted using RNA sequencing based gene expression data 

from BrainSpan whole-genome transcriptomic data. The authors used only data from brain 

samples spanning 8 weeks post-conception to 12 months after birth. WGCNA identified a total 

of 17co-expresion modules. Five of these modules are associated with different risks for 

autism. Modules Mdev 13, Mdev16, and Mdev17 are enriched for transcriptionally 

dysregulated genes in the autism post-mortem cortex. Whereas modules Mdev2 and Mdev3 

are enriched for rare genetic variants associated with autism. Modules Mdev13, Mdev16, and 

Mdev17 are enriched for the GO term ‘Synaptic transmission’ and are all upregulated. Mdev16 

is upregulated first (Post-conception week - PCW 10), followed by Mdev17 (PCW 13) and 

finally Mdev13 (PCW 16). The developmental trajectories of all three modules are closely 

aligned but are sequential. In contrast, Mdev2 and Mdev3 are enriched for pathways associated 

with DNA binding and transcriptional regulation.  
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C.6.4 Rare	de	novo	genetic	variants	

The following describes the analyses conducted in Sanders et al., 2015. 

 

Genes harbouring rare, de novo variants associated with autism were identified from Sanders 

et al., 2015. A total of 65 genes associated with autism (FDR adjusted P-value < 0.1) were 

identified using exome sequencing data and small de novo CNV detection largely using 

genotyping data. This was conducted after integrating data from multiple different studies from 

more than 10,220 individuals from 2,591 families recruited as a part of the Simon’s Simplex 

Collection.  

C.6.5 Common	genetic	variants		

Genome-wide association data of the latest data freeze of the autism spectrum disorder working 

group of the Psychiatric Genomics Consortium was downloaded from the PGC website 

(http://www.med.unc.edu/pgc/results-and-downloads). This dataset consists of 5,305 cases and 

5,305 pseudocontrols (i.e. the non-transmitted haplotypes of the parents) of European ancestry. 

A total of 553,795,981 SNPs were tested for association. SNP based P-values were converted 

to gene-based P-values using a hg19 genome build using MAGMA (de Leeuw et al., 2015), 

which accounts for linkage disequilibrium between SNPs when calculating gene-based P-

values. The Benjamini-Hochberg FDR corrected gene-based P-values were used as the 

independent variable to test for enrichment analyses using a regression model (explained 

below). 
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C.6.6 Regression	analyses	

Usually, enrichment analyses are conducted using Fisher’s exact test or hypergeometric test 

(equivalent to a one-sided Fisher’s exact test).  However, these tests do not incorporate 

potential covariates that may arise with the different methods used to identify significant genes 

(for example, comparing enrichment of genes identified using exome sequencing in a list of 

genes identified using RNA expression).  One significant covariate for enrichment analyses is 

gene length. To correct for the gene length bias we used a logistic regression analyses with 

gene length included as a covariate. 

	

This can be written as: 

Y = B0 + B1x1 + B2x2 + E 

	

Where Y is the odds that the gene is significant after FDR correction for the PLSR module (1 

if the gene is significant, 0 if the gene is not significant); x1 is the independent variable in the 

autism dataset tested; x2 is the gene length. Regression analyses were conducted in R. For all 

enrichment analyses, the dependent variable (Y) was if the gene was significant after FDR 

correction in the PLSR component. If the gene was significant, i.e. FDR-adjusted P-value < 

0.05, this gene was given a membership of 1, and a membership of 0 if the gene failed to reach 

significant. The independent varied between the analyses. For the transcriptionally regulated 

gene lists, the independent variable was the absolute fold-change of the gene if the gene was 

significant after FDR correction (P_corrected < 0.05). For gene co-expression module analyses, 

the kME for all the genes which measures the module membership of the gene. For the common 
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variants, we used the Z scores of the gene-based P-values. Finally, for the rare-variant analyses, 

if the gene was one of the 65 genes harbouring rare de novo variants (Sanders et al., 2015), the 

gene was given a membership of 1, and if not a membership of 0.  Results of the enrichment 

analysis are provided in Supplementary Table C.6 

Table	C.6:	Results	of	the	gene	enrichment	analyses		

Discovery (ABIDE 1) 

Category Dataset OR Upper 

CI 

(95%) 

Lower 

CI 

(95%) 

P P_corrected 

Autism transcription Dysregulated 1.21 1.23 1.19 2.00E-16 2.81E-15 

Autism transcription Downregulated 1.87 1.94 1.8 6.74E-13 3.55E-16 

Autism transcription Upregulated 1.01 1.02 1 4.99E-01 4.99E-01 

Adult co-expression modules Mod4 1.08 1.08 1.07 2.00E-16 3.55E-16 

Adult co-expression modules Mod10 1.07 1.08 1.07 2.00E-16 3.55E-16 

Adult co-expression modules Mod16 1.08 1.08 1.07 2.00E-16 3.55E-16 

Adult co-expression modules Mod9 0.93 0.94 0.92 2.01E-14 2.92E-14 

Adult co-expression modules Mod19 0.93 0.94 0.92 2.00E-16 3.55E-16 

Adult co-expression modules Mod20 0.97 0.97 0.96 6.22E-05 7.66E-05 

Common variants Common variants 1 1.01 1 2.75E-01 2.93E-01 

Rare variants Rare variants 0.96 0.99 0.93 2.42E-01 2.76E-01 

Fetal co-expression modules Moddev2 0.97 0.97 0.96 1.28E-11 1.70E-11 

Fetal co-expression modules Moddev3 0.96 0.97 0.96 2.00E-16 3.55E-16 

Fetal co-expression modules Moddev13 1.04 1.04 1.04 2.00E-16 3.55E-16 

Fetal co-expression modules Moddev16 1.06 1.06 1.05 2.00E-16 3.55E-16 

Fetal co-expression modules Moddev17 1.04 1.05 1.04 2.00E-16 3.55E-16 

Validation 1 (GU) 

Category Dataset OR Upper 
CI 

(95%) 

Lower 
CI 

(95%) 

P P_corrected 
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Autism transcription Downregulated 1.24 1.31 1.18 4.05E-03 4.62E-03 

Adult co-expression modules Mod4 1.06 1.07 1.04 2.49E-05 3.32E-05 

Adult co-expression modules Mod10 1.05 1.06 1.04 2.02E-05 3.23E-05 

Adult co-expression modules Mod16 1.07 1.08 1.06 2.81E-10 5.62E-10 

Fetal co-expression modules Moddev13 1.05 1.06 1.05 8.85E-11 2.36E-10 

Fetal co-expression modules Moddev16 1.07 1.08 1.06 3.47E-12 1.39E-11 

Fetal co-expression modules Moddev17 1.07 1.07 1.06 2.25E-14 1.80E-13 

Validation 2 (KKI) 

Category Dataset OR Upper 

CI 

(95%) 

Lower 

CI 

(95%) 

P P_corrected 

Autism transcription Downregulated 1.3 1.45 1.15 6.35E-04 1.10E-03 

Adult co-expression modules Mod4 1.02 1.04 0.99 1.95E-01 1.95E-01 

Adult co-expression modules Mod10 1.04 1.06 1.01 2.48E-03 3.00E-03 

Adult co-expression modules Mod16 1.02 1.04 1 3.16E-02 3.60E-02 

Fetal co-expression modules Moddev13 1.06 1.07 1.04 6.20E-11 4.34E-10 

Fetal co-expression modules Moddev16 1.05 1.05 1.05 1.69E-06 3.94E-06 

Fetal co-expression modules Moddev17 1.05 1.07 1.04 3.04E-09 1.06E-08 

Validation_transcription 

Dataset1 Dataset2 OR Upper 

CI 

(95%) 

Lower 

CI 

(95%) 

P P_corrected 

Discovery MRI Downregulated 

genes 

1.4 1.45 1.34 6.19E-08 1.86E-07 

Validation1 MRI Downregulated 

genes 

1.35 1.44 1.27 3.68E-03 5.00E-03 

Validation2 MRI Downregulated 

genes 

1.3 1.52 1.08 1.97E-02 1.90E-02 
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C.7 Rank-rank	hypergeometric	overlap	(RRHO)	analysis	

RRHO is a threshold-free algorithm that is used to identify overlap between two separate gene 

lists (Plaisier et al., 2010). The algorithm parses two separate ranked lists and identifies overlap 

at various step sizes as it steps through the lists. It is useful for addressing two problems. First, 

RRHO is threshold-free, and hence, we do not need to define a statistical threshold for 

investigating overlap between two gene lists. Second, it is more robust to the size of the gene 

list. For the Z-scores of the PLSR1 genes in the discovery and validation MRI cohort, we 

ranked the genes, with the genes having the highest negative Z score having the highest rank. 

To account for the negative correlation in the ΔCT between the two datasets, and consequently, 

the negative correlation in gene weights and the Z-scores, we conducted rank- inverse rank 

overlap, where we inverted the rank of the Z-scores in the validation MRI cohort. RRHO  was 

performed on the online server (http://systems.crump.ucla.edu/rankrank/rankranksimple.php) 

using a step size of 100 as recommended. We identified a significant overlap in the Z-scores 

of the PLSR1 genes between the discovery MRI dataset and the validation MRI dataset, after 

correcting for multiple testing correction using Benjamini-Yekutieli based FDR correction.  
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Figure C.7: Rank-rank hypergeometric overlap between the PLSR1 Z-scores of the discovery and validation 

autism MRI cohorts.  
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D.1 Procedure	and	participants	

Participants were recruited via online advertisements, the Cambridge Psychology database, 

local newspaper advertisements and posters spread across Cambridge. None of our participant 

had a diagnosis of autism or Asperger or related disorder and all participants were of Caucasian 

origin. Participants were instructed to abstain from alcohol and caffeine on the day of testing 

and from food and drink, except water, for 2 hours before spray administration. On arrival all 

participants were informed about the nature of the study and were given the opportunity to ask 

any questions for clarification. Written informed consent was obtained from all participants. 

Prior to the first session participants completed the Autism Spectrum Quotient (AQ) (Baron-

Cohen et al., 2001) and the Empathy Quotient (EQ) (Baron-Cohen & Wheelwright, 2004). At 

the start of the first session, participants were administered the Wechsler Abbreviated Scale of 

Intelligence (WASI; (Wechsler, 1999)) and National Adult Reading Test (NART; (Nelson & 

Wilson, 1991)). Descriptive statistics on these measures are provided in table D.1.  

 

Before administration of the nasal spray a medical examination including measurements of 

blood pressure, heart rate, general wellbeing and short medical history was conducted by a 

GMC registered medical doctor. A pregnancy test was also administered to avoid any potential 

effects of OXT. A medical professional provided a prescription and remained in attendance to 

manage any potential adverse effects from the spray. The participants received either the active 
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or placebo nasal spray (three puffs per nostril, alternating between sides 4IU, 6.72 µg each). 

Heart rate and blood pressure were also continually monitored during scanning. One participant 

reported feeling slightly light-headed after the first MRI session. Post-hoc un-blinding revealed 

that this occurred during the placebo condition. No other side effects were reported. After 

administration of the nasal spray participants were prepared for MRI scanning and the 

anatomical MRI commenced approximately 30 minutes after administration, followed by the 

resting-state sequence 40 minutes after oxytocin administration. This study was part of a larger 

project and subjects subsequently (e.g. the resting-state was always acquired first) performed 

3 short computerized tasks in the scanner that are not reported here. After scanning participants 

were asked to judge in which order they thought they had received the sprays. None of the 

participants were confident in their judgment and when pressed 11 out of 25 guessed correctly. 

D.2 Image	processing	

Multi-echo functional images were pre-processed and denoised using the AFNI integrated 

multi-echo independent component analysis (ME-ICA, meica.py v3, beta1; 

http://afni.nimh.nih.gov) pipeline (Kundu et al., 2013). This pipeline included: skull-stripping 

of the anatomical MPRAGE image and warping it to the MNI anatomical template, co-

registration of the first TE functional data to compute motion correction and for anatomical-

functional co-registration, deobliquing of functional data, 12-paramater affine anatomical-

functional co-registration using the local Pearson correlation and T2* weights (lp-t2s) cost 

function. Each TE functional dataset was slice-time corrected and spatially aligned through 

application of the anatomically derived alignment matrix using nonlinear warping to MNI 
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space (MNI152 template) with AFNI 3dQwarp. No temporal filtering or smoothing was 

applied to the data.  

 

Next, functional data were decomposed into independent components (ICs) as part of the ME-

ICA pipeline. Subsequently, ICs were categorized as BOLD or non-BOLD based on their 

weightings measured by Kappa and Rho values, respectively. Because BOLD signal changes 

are linearly dependent on echo time (TE), a characteristic of the T2* decay, TE dependence of 

BOLD signal is used to dissociate BOLD from non-BOLD signal using the pseudo-F-statistic, 

Kappa. ICs that scale strongly with TE have high Kappa scores (Kundu et al., 2013). 

Conversely, non-BOLD ICs are identified by TE independence measured by the pseudo-F-

statistic, Rho. By removing non-BOLD ICs, data are denoised for motion, physiological and 

scanner artefacts in a robust manner based on physical principles (J. W. Evans, Kundu, 

Horovitz, & Bandettini, 2015; Kundu et al., 2013). One session for one subject had to be 

excluded due to technical difficulties in the realignment procedure. This subject was removed 

from subsequent analyses. 

D.3 Between-Component	Connectivity	Analysis	

Time courses for each component and subject were used to model between-component 

connectivity during placebo and oxytocin administration. This was achieved by constructing a 

correlation matrix of the 22 non-noise components for each subject.  Connectivity strength in 

this correlation matrix was measured as the correlation coefficient after running robust 

regression (Wager et al., 2005) (https://github.com/canlab/RobustToolbox), to mitigate bias 
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from outlier time points. We then tested for difference in connectivity strength for placebo 

versus oxytocin with a paired-sample t-test for each between-component connection.  

Correction for multiple comparisons was achieved via Bonferroni correction at a family-wise 

error rate of 5%. For component pairs that survived multiple comparison correction, we 

computed a difference score between oxytocin and placebo on the Fisher z-transformed 

correlation statistics (Steiger, 1980). This difference score indicates the size of oxytocin-related 

connectivity enhancement, with larger scores indicating larger enhancement of connectivity 

from oxytocin, whereas scores near 0 indicate no difference in connectivity between oxytocin 

and placebo. To report an effect size for any oxytocin-related effects on connectivity, we 

computed effect size as the mean of the difference score divided by the standard deviation of 

the difference score. This effect size is analogous to Cohen’s d and indicates the magnitude of 

effect above a null effect of 0 in units of standard deviation. To get an indication of how 

variable such an effect size estimate is, we used bootstrapping (1 million resamples) to identify 

the 95% bias-accelerated bootstrap confidence intervals around our actual effect size estimate.  

We also used this difference score to test for association with autistic traits as measured by the 

AQ using robust regression. In past work we have observed that oxytocin tends to have larger 

effects on individuals have higher levels of autistic traits (Auyeung et al., 2015). Therefore, we 

made the directional prediction that oxytocin-related effects on connectivity would be 

positively correlated with autistic traits. 

Table	D.1:	Descriptive	statistics	on	participant	sample	from	administration	study	

This table show the mean, standard deviations and range of the questionnaire scores obtained during this study. 

Normality was assessed using the Shapiro-Wilk test of normality and indicated that the assumption against 

normality should be rejected, in subsequent test we thus used parametric tests (i.e. to assess the correlation of our 

main outcome measure with AQ). 
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		 Mean	 Standard		

Deviatio

ns	

Range	 Normality	

		 		 Min	 Max	 W	 p	

WASI		 115.3	 13.19	 90	 148	 0.956	 0.347	

NART	 118.1	 5.04	 107	 127	 0.960	 0.411	

AQ	 14.4	 7.32	 3	 33	 0.963	 0.475	

EQ	 55.6	 14.53	 19	 77	 0.955	 0.330	

 

Table	D.2:	Descriptive	statistics	for	OXTR	expression	in	females	

Descriptive statistics for all female data from the GTEx and BrainSpan datasets. RNAseq data was summarized 

to RPKM and all descriptives and inferential statistics are based on these RPKM values. Two different one-sample 

t-tests were performed to compare OXTR expression to 0 and to non-brain (skin) tissue. These tests were 

performed within a permutation test (1000 permutations) to derive p-values. 

 

	

Region n mean sd median T P T P Mean	Difference

Caudate	(basal	ganglia) 32 2.51 3.27 1.27 4.33 1.43E-04 4.12 3.64E-04 2.38
Nucleus	accumbens	(basal	ganglia) 34 4.52 3.58 3.60 7.37 1.81E-08 7.17 4.56E-08 4.40

Frontal	Cortex	(BA9) 31 1.32 1.27 0.88 5.76 2.70E-06 5.23 1.74E-05 1.19
Putamen	(basal	ganglia) 28 1.98 1.56 1.38 6.73 3.13E-07 6.32 1.20E-06 1.86

Hypothalamus 25 3.23 2.77 2.88 5.82 5.26E-06 5.60 1.14E-05 3.10
Spinal	cord	(cervical	c-1) 28 2.11 2.43 1.22 4.61 8.68E-05 4.34 2.37E-04 1.99

Anterior	cingulate	cortex	(BA24) 23 1.29 0.78 1.05 7.96 6.36E-08 7.21 3.48E-07 1.17
Substantia	nigra 24 6.65 10.84 3.92 3.01 6.29E-03 2.95 8.36E-03 6.53
Hippocampus 29 1.12 0.90 0.86 6.69 2.91E-07 5.96 2.75E-06 1.00

Amygdala 22 1.23 0.69 0.96 8.39 3.83E-08 7.55 2.13E-07 1.11

primary	motor	cortex	(area	M1,	area	4) 8 1.78 0.79 1.43 6.39 3.72E-04 2.83 1.81E-02 1.65
dorsolateral	prefrontal	cortex 8 1.57 0.81 1.43 5.48 9.28E-04 2.83 1.81E-02 1.45

posterior	(caudal)	superior	temporal	cortex	(area	22c) 9 1.44 0.85 1.16 5.08 9.49E-04 2.36 3.58E-02 1.32
primary	visual	cortex	(striate	cortex,	area	V1/17) 9 1.37 0.52 1.64 7.85 4.99E-05 2.36 3.58E-02 1.24

anterior	(rostral)	cingulate	(medial	prefrontal)	cortex 7 1.46 0.51 1.45 7.60 2.70E-04 3.37 9.29E-03 1.33
orbital	frontal	cortex 8 1.41 0.68 1.26 5.88 6.11E-04 2.83 1.81E-02 1.29

inferolateral	temporal	cortex	(area	TEv,	area	20) 9 1.69 0.69 1.60 7.29 8.44E-05 2.36 3.58E-02 1.56
primary	somatosensory	cortex	(area	S1,	areas	3,1,2) 8 1.63 0.82 1.73 5.66 7.70E-04 2.83 1.81E-02 1.51

ventrolateral	prefrontal	cortex 9 1.69 1.07 1.30 4.75 1.44E-03 2.36 3.58E-02 1.57
cerebellar	cortex 9 1.09 0.48 1.10 6.78 1.40E-04 2.36 3.58E-02 0.97

primary	auditory	cortex	(core) 8 1.88 0.63 2.11 8.36 6.89E-05 2.83 1.81E-02 1.75
mediodorsal	nucleus	of	thalamus 8 1.19 0.59 1.20 5.70 7.35E-04 2.83 1.81E-02 1.07

posteroventral	(inferior)	parietal	cortex 9 1.42 0.78 1.15 5.47 5.93E-04 2.36 3.58E-02 1.30

Expression	Descriptives Compared	to	0 Compared	to	skin	tissue	expression
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Fig. D.1: Gender comparison of OXTR expression 

Although our main expression and imaging analyses focused on the oxytocin system in women, we also performed 

exploratory analyses on potential gender differences in OXTR expression in the same gene expression data-sets. 

Panels A and D show the RPKM expression values of OXTR for women, panels B and E show expression in the 

same brain regions for men. Panels C and F show the gender differences. Only the anterior cingulate, medial 

nucleus of the thalamus and the cerebellar cortex showed significant gender differences (p<0.05). In all cases 

where there was a significant difference men showed slightly higher expression on average. These findings should 

be considered exploratory as the samples are not matched, the BrainSpan datasets is limited in terms of sample 

size and there is in general a lot of variability in the expression of the oxytocin receptor. 
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Fig. D.2: FDR corrected pairwise comparisons of all components 

Only the component pair IC11-IC21 survived multiple comparison corrections, none of the other pairs were 

significant at p < 0.05. 
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Fig. D.3:  Bootstrap effect size distribution for IC11-IC21 effect.   

Shows the distribution of effect size estimates calculated after bootstrapping (1 million resamples). The actual 

estimate is shown with the black vertical line. The red line shows the minimum effect size (d = 0.6) for achieving 

80% power at an alpha of 0.05 and n=24. 
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Fig. D.4:  Effect size estimates for all pairwise comparisons.   

Effect size is computed as the mean of the difference score (e.g., oxytocin – placebo) divided by the standard 

deviation of the difference score. This effect size is analogous to Cohen’s d and indicates the magnitude of effect 

above a null effect of 0 in units of standard deviation. 
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E.1 Whole-brain	effects	

In addition to the hypothesis driven resting-state connectivity analysis, we also employed a 

data-driven approach to investigate potential whole brain effects of testosterone on functional 

connectivity. Seed-based analyses only focus on very specific networks and connections. In 

contrast, independent component analysis makes no assumptions about the underlying 

networks and thus allows a model-free analysis of any potential differences. Analyses were 

carried out using Probabilistic Independent Component Analysis (Beckmann & Smith, 2004) 

as implemented in MELODIC (Multivariate Exploratory Linear Decomposition into 

Independent Components) Version 3.14, part of FSL (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl). The following steps were applied to the pre-processed wavelet 

despiked data: masking of non-brain voxels; voxel-wise de-meaning of the data; normalisation 

of the voxel-wise variance. Pre-processed data were whitened and projected into a 35-

dimensional subspace using probabilistic Principal Component Analysis where the number of 

dimensions was estimated using the Laplace approximation to the Bayesian evidence of the 

model order (Beckmann & Smith, 2004; Minka, 2001), thus resulting in 35 independent 

components. The whitened observations were decomposed into sets of vectors which describe 

signal variation across the temporal domain (time-courses), the session/subject domain and 

across the spatial domain (maps) by optimising for non-Gaussian spatial source distributions 

using a fixed-point iteration technique (Hyvärinen, 1999a). Estimated Component maps were 
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divided by the standard deviation of the residual noise and thresholded by fitting a mixture 

model to the histogram of intensity values (Beckmann & Smith, 2004). Permutation testing 

was used to assess potential effects of testosterone across all 35 components, using 5000 

permutations and a threshold free cluster enhancement (TFCE) to control for multiple 

comparison as implemented in FSL’s randomise tool (Winkler et al., 2014). No significant 

clusters were found across any of the 35 identified components. 
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E.2 Seed-based	connectivity	effects	

	
Fig. E.1 Seed-based functional connectivity of the amygdala 

	


