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Abstract

The first part of this thesis discusses developmental influences on the human connectome
in relation to autism and attention deficit hyperactivity disorder (ADHD), conditions
associated with alterations in brain connectivity and marked by social impairments. It
reports an experiment investigating whether the connectomes of individuals with autism
or ADHD differ from the connectome of neurotypical individuals, and what the underlying
genetic basis could be for any differences in neural architecture. Chapter 2 reports an
analysis of networks in children with autism or ADHD, using structural covariance
magnetic resonance imaging (scMRI). We found overlapping as well as distinct network
features across both conditions. Chapter 3 reports an analysis of how gene expression
might be associated with the basic building blocs of these structural covariance networks.
We found that synaptic and transcriptionally downregulated genes were replicably
associated with cortical thickness differences in children with autism, but not in children

with ADHD.

In addition, the first part also aims to elucidate the potential modulation effects of sex on
autism neurobiology. Chapter 4 reports an analysis of structural covariance networks in
male and female adults with and without autism. We found that biological sex is a
modulator of neurobiological heterogeneity in autism. Chapter 5 reports pilot data
aiming to identify an electrophysiological signature of these network properties using
electroencephalography (EEG). We find little evidence for theories about network

asymmetry, but indications of altered frontal network integration.



The second part of the thesis examines the acute effects of hormones on brain
connectomics. Hormones are an integral part of the mechanism of social behaviour. In a
series of hormone administration studies, we report experiments to test the acute effects
of steroid and peptide hormones on brain functional connectivity (Chapters 6 and 7).
Chapter 6 reports an oxytocin administration study that used a novel data-driven
approach to assess resting-state fMRI connectivity in women. Although the number of
fMRI studies on oxytocin have increased over past years, little is known about its effect
on women. We found that oxytocin robustly enhances cortico-subcortical connectivity,
and that this effect positively correlates with autistic traits. This is interesting given that
oxytocin has been proposed as a potential therapeutic in autism. Chapter 7 reports an
experiment testing if testosterone modulates connectivity in a specific social
environment (a fear response). This was confirmed during the social task, but not during
baseline resting-state, highlighting the role of testosterone in functional connectivity in

this specific context.

Chapter 8 is the concluding chapter that integrates all the empirical findings in the thesis.
We discuss their implications for our understanding of autism and ADHD, and of the role
of steroid and peptide hormones in the typically and atypically developing connectome.
Chapter 8 also reflects on the limitations of the experiments reported, and sets out future

directions for research in this area.
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Chapter 1 Introduction

The idea of the brain as a network of constituent neuronal elements is not new. Already in the
early 1900’s Santiago Ramoén y Cajal, considered one of the founding fathers of modern
neuroscience, noticed the structured patterns of the human cortex (DeFelipe & Jones, 1988).
Methods to study these fascinating patterns have evolved fast since the time of Golgi staining.
Techniques such as fluorescence microscopy, electron microscopy but also magnetic resonance
imaging (MRI), diffusion tensor imaging (DTI), and elecetroencephalography (EEG) are but a
few examples of techniques that have made it possible to study neuronal and cortical structures
at micro and macro scales. These advances combined with improvements in computational
power are increasingly giving rise to a new field of neuroscientific study: network science and
the study of the human connectome (Sporns, Tononi, & Kotter, 2005). In its broadest sense the
human connectome is taken to mean: the network of connections between different parts of the

brain.

Distinctions are often made between structural connectivity (e.g. physical connections) and
functional connectivity (some statistical relation between activity in different brain regions).
These networks are no longer being studied on a purely structural level or in vitro. There is an
increased interest in the relation between the functioning of this network and the functioning
on a more cognitive and behavioural level (Seung, 2011), as well as efforts to disentangle the
mechanistic underpinning of the emergent network properties (Romme et al., 2016; Whitaker
et al., 2016). Before moving on to combining cognitive and behavioural elements with brain

organizational principles and investigating mechanistic organizational principles however it is
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important to keep a number of key concepts in mind throughout this thesis. First and foremost,

we need to distinguish between different types of connectivity analyses.

1.1 Structural connectivity

Structural connectivity refers to physical connections in the brain, either at the synaptic level,
or at the level of axons or even the dense connection highway of the corpus callosum as a whole.
Often these connections are investigated in humans in-vivo using some type of diffusion
weighted imaging such as Diffusion Tensor Imaging (DTI). These techniques are generally
intended to measure dispersion or diffusion of water molecules in order to visualize the white
matter fibre structure (e.g. myelin) of brain connections. Assuming that connections in the brain
are continuously forming and changing this is a valuable technique to study development of
brain networks. Thus, this method can be particularly promising to study neurodevelopmental
conditions such as autism or ADHD. Studies have for example found evidence that these white
matter tracts might be developing along different trajectories in a neurodevelopmental condition
such as autism (Courchesne, 2004; Courchesne et al., 2007; Courchesne, Campbell, & Solso,
2011). Specifically, that there might be an early overgrowth combined with later undergrowth,
or even a regression (Courchesne, 2002, 2004; Courchesne et al., 2001; Courchesne, Carper, &
Akshoomoft, 2003). Differences in growth patterns and in synaptic pruning (Craik & Bialystok,

2006; Low & Cheng, 2006) are likely to result in different structural neural networks.

Recent reviews of connectivity studies in autism suggest that there are indeed connectivity
differences that might characterize the condition (Rane et al., 2015; Vissers, Cohen, & Geurts,
2012). The patterns that are mostly reported are of decreased connectivity and an increase in

diffusivity, yet the overall picture seems heterogeneous and somewhat dependent on
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1.2 Functional connectivity 5

methodologies (Vissers et al., 2012). Although the majority of connectivity research in autism
has focused on functional connectivity it is likely that differences in structural connectivity
could underlie differences in functional connectivity (Greicius, Supekar, Menon, & Dougherty,

2009).

1.2 Functional connectivity

Functional connectivity is best defined as a temporal correlation in the activity between two
spatially different regions (Friston, Frith, Liddle, & Frackowiak, 1993; Zuo et al., 2010). When
using fMRI this refers to a correlation in the blood oxygenated level dependent (BOLD)
response between different brain regions. However, in an electrophysiological sense, this can
also refer to phase lagged relations in electrical field potentials (such as measured with
electroencephalography) over time between different recording sites. The complete functional
architecture of the brain is often referred to as the brain’s functional 'connectome’ (Biswal,
Eldreth, Motes, & Rypma, 2010; Seung, 2011). The general idea is that complex processing
requires different brain regions to work together (e.g. synchronize or correlate their activity).
In individuals with autism this type of integration of multiple systems might be affected or
atypical (Belmonte et al., 2004). In a recent review of the literature on atypical functional in
autism it was evident that, since connectivity was suggested as a target for research, there has
been an explosion of connectivity theories concerning autism (Vissers et al., 2012). One
prominent theory postulates that autism is characterized by local over-connectivity combined
with global underconnectivity (Belmonte et al., 2004). Sadly, the methods and findings have
been as heterogeneous as the spectrum itself (Vissers et al., 2012). What is clear is that there is
a diverse pattern of connectivity differences that might not be fully captured solely in terms of

“local” or “global” connectivity differences.
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1.3 Structural covariance

There is also a third, somewhat intermediate, level of analysis called structural covariance
analysis, which technically should not be considered connectivity in a pure sense, but which
does tell us something about brain organization. This recently emerging method refers to the
technique of covarying inter-individual differences in neural anatomy (Alexander-Bloch,
Giedd, & Bullmore, 2013; Evans, 2013). Generally, a single (gray-matter based) anatomical
property such as cortical thickness or regional volume is used to construct a correlation matrix
for one or several groups by taking the cross correlation of that anatomical property for a single
region with all other regions. This correlation thus reflects the extent to which the neuroanatomy
of a certain region is related to the neuroanatomy of other regions. As such it serves as an
intermediate method of network analysis between functional and structural connectivity. The
obtained correlation matrices can subsequently be subjected to network analysis. Structural
covariance networks, in a neurotypical population, have been shown to strongly overlap with
networks derived from purely structural measures such as diffusion weighted imaging (Gong,
He, Chen, & Evans, 2012). It is likely that these networks are strongly related to networks

derived from functional connectivity analysis (Alexander-Bloch, Giedd, et al., 2013).

In addition, structural covariance networks have been shown to be partly heritable (Schmitt et
al., 2009) and follow a pattern of coordinated maturation (Alexander-Bloch, Raznahan,
Bullmore, & Giedd, 2013; Raznahan et al., 2011; Zielinski, Gennatas, Zhou, & Seeley, 2010).
With respect to neurodevelopment, structural covariance networks might provide a relatively
easy way to investigate potential differences in brain network development as any differences
are likely the result of differing developmental trajectories (e.g. one is effectively measuring

some stage of this shared developmental trajectory). This can be particularly interesting in
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studying coordinated development of brain networks when for example comparing two
neurodevelopmental groups. The advantage of structural covariance analysis is that it focuses

on this coordinated structure of the entire brain as opposed to zooming in on a specific structure.

Furthermore, structural data on which these networks are based is much more widely available,
analytically less computationally intensive and arguably less sensitive to noise compared to
functional imaging (such as motion artefacts). For example, in autism, structural covariance
analysis has shown that in regions relevant for social and sensorimotor processing there is a
regional or nodal decrease in centrality (Balardin et al., 2015). Meaning that these regions are
less strongly embedded in the global brain network in individuals with autism. Furthermore,
speech and language impairments in autism have also been associated with differences in

structural covariance properties (Sharda, Khundrakpam, Evans, & Singh, 2014).

A caveat of using structural covariance analysis that should be emphasized is that the resulting
structural covariance network is based on the group-wise covariance. Thus, individual level
data is lost at this point. Tools to assess individual level structural covariance are being
developed but for the present work we focused on existing methodology. It should be noted
however that the group-level networks derived from structural covariance analysis show high
overlap with functional and structural connectivity derived networks (Alexander-Bloch, Giedd,
et al., 2013). As new tools to assess individual level structural covariance become available

they will be applied to the data outlined in this thesis as well.

Thus, there are a number of different ways to assess changes to the network of neural

connections that is the human brain. In addition to the three broad domains described above
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there are a number of methods to quantify organizational properties of brain networks. In this
thesis we will mainly use two of those: graph theory and independent component analysis
(ICA). Graph theory is described in detail elsewhere (Bullmore & Sporns, 2009; Mark
Newman, 2010; Sporns, 2011) but a brief overview of the most commonly used measures and
their mathematical underpinning is provided in the Supplementary material (Appendix A).
Within ICA there are yet more different parameters and sub-domains. Throughout this thesis

the most commonly used implementation by fsl (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) is

utilized. This implementation is described in more detail by Christian Beckman and colleagues
(Beckmann, DeLuca, Devlin, & Smith, 2005). Where applicable each individual chapter

describes the exact methods and parameters used.

Much like any other type of network, components of brain networks tend to be specialized to
specific functions, yet they clearly do not operate in isolation. This is evident from our day to
day interaction with the world around us. Human (social) behaviour undoubtedly arises as a
complex interaction between a constantly changing environment and our responses to it. In such
a dynamic and complex system, it seems unlikely that our responses are driven by a single
specialized brain region, but more likely by a complex and dynamic system. Thus, the need to
understand the brain as a complex network becomes ever more important. In that respect, there
are numerous factors that could potentially influence the underlying architecture and
subsequent emerging functionality of brain networks. Looking at three specific factors
(coordinated developmental maturation, genetic contributions to cortical organization and the
acute effects of hormones) this thesis examines the broad question of how brain network

organization is affected in developmental psychopathology, specifically in relation to autism.
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1.4 Brain morphology in atypical development

The first influence on brain networks addressed in this thesis is how coordinated maturation of
different parts of the brain might give rise to altered morphology in two developmental
conditions; autism and ADHD. These two conditions are of particular interest because, while
they are considered distinct conditions from a diagnostic perspective, clinically they share
phenotypic features and have high comorbidity and genetic overlap (Leitner, Neuroscience, &
Leitner, 2014; Rommelse et al., 2010). Studying both conditions in conjunction might thus shed
light on general principles of atypical development as well as unique features for both autism
and ADHD. Regardless of this overlap, most studies have focused on only one condition, with
considerable heterogeneity in their results. The rationale for combining the two was that a dual-
condition approach might help elucidate the shared and distinct neural characteristics

(Dougherty, Evans, Myers, Moore, & Michael, 2015).

Using structural covariance analysis, Chapter 2 discusses this overlap between autism and
ADHD. In this chapter, we thus broadly address the question of whether there is a converging
or a diverging pattern of coordinated developmental maturation between the two developmental
conditions, with specific emphasis long-range and short-range connectivity patterns. It has been
speculated that individuals with autism may have a disruption in the balance of these two types
of connections (Belmonte et al., 2004). Specifically, it has been hypothesized that individuals
with autism have increased local (short-range) connections at the expensive of global (long-
range) connections. This hypothesis finds evidence from behavioural studies that for example
show increased attention to detail at the expense of more global information integration (Frith

& Happé, 1994). Although there are many studies that have reported inherent connectivity
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differences that would point to a generally altered pattern of brain organization, to date these

have not been captured in a single explanatory framework (Vissers, Cohen, & Geurts, 2012).

Several studies on ADHD also suggest alterations in cortical organization (Durston, Eickhoff,
Konrad, & Eickhoff, 2010; Konrad & Eickhoff, 2010). Yet again, there does not appear to be
clear uniform pattern in these findings. The idea of disruptions in long-range versus short-range
connectivity 1s one of the few ideas that finds resonance in both conditions (Kern et al., 2015)
and which might provide a more unified framework. To address this question, graph theory was
used to analyse topological properties of structural covariance networks across both conditions
and relative to a neurotypical (NT; n=87) group using data from the ABIDE (autism; n=62) and
ADHD-200 datasets (ADHD; n=69). Regional cortical thickness was used to construct the
structural covariance networks. In these covariance networks we studies the relationship
between regional Euclidean distance and the relative extent of their group-wise covariance. The
assumption here is that regions that share a developmental trajectory have higher group-wise
covariance and that a shared developmental trajectory is a potential marker for underlying

functional or structural coherence between regions.

Having examined structural covariance, based upon cortical thickness covariance networks in
children with autism, we next turned our attention to study a group of adults with autism.
Fortunately, the adult data-set that we are working with gives us the opportunity to answer an
additional and vital question in autism research: is there a moderating effect of biological sex
on these potentially altered developmental trajectories? There have been several theories that
have aimed to capture the known male bias in autism diagnoses into a coherent framework

(Baron-Cohen, 2002; Bejerot et al., 2012). On one hand, there is the theory of autism as being
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1.5 Genetic contributions to altered brain morphology 11

an extreme form of the male brain (Baron-Cohen, 2002), which broadly states that normative
neural and cognitive sex differences might be exaggerated towards the extreme male end in
individuals with autism. On the other hand there is a more recent theory that describes autism
in terms of gender incoherence (Bejerot et al., 2012). In this account individuals with autism
would show a phenotype that falls in-between the normative sex differences (and to some
extend perhaps even more closely resembles female patterns). Both accounts and their
respective predictions for brain organization principles are described in more detail in Chapter
4. Thus, Chapter 4 discusses not only how some of the findings from Chapter 2 progress into
adulthood, but also addresses the potential moderating effects of biological sex in adults with
autism. A further question that emerges from the known male bias in autism and the resulting
relation to social behaviour is how sex hormones come into play. This question is addressed in

more detail in Chapters 6 and 7.

1.5 Genetic contributions to altered brain morphology

Chapter 3 builds on work done in Chapter 2 and extensively addresses how (and which) genetic
risk factors for autism are associated with the underlying differences in cortical morphology.
We specifically asked how genes contribute to differences in cortical thickness in autism.
Differences in cortical morphology - in particular cortical volume, thickness and surface area -
have been reported extensively in individuals with autism (Ecker, 2016; Ecker, Ginestet, Feng,
Johnston, Lombardo, Lai, Suckling, Palaniyappan, Daly, Murphy, Williams, Bullmore, Baron-
Cohen, Brammer, & Murphy, 2013; Ecker, Ronan, et al., 2013; Lai et al., 2014) and they are
the building blocks on which the structural covariance analysis of Chapters 2 and 4 are

effectively based. However, it is unclear what genetic variants implicated in autism contribute
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to these differences. Here, we ask: what are the genetic determinants of global cortical thickness
differences (ACT) in children with autism? We used Partial Least Squares Regression (PLSR)
on structural MRI data from 62 children with autism (cases) and 87 matched typically
developing control individuals (controls) and cortical gene expression data from the Allen
Institute for Brain Science (AIBS) to identify genes that contribute to global differences in
cortical thickness in autism. This data-driven approach provides weights for the association of
each gene with ACT. Analysing these gene weights we explored enrichment with a number of
different classes of genetic risk in autism. Given the data-driven nature of this approach we also
validated our discovery findings in two independent MRI datasets from the second release of

ABIDE.

1.6 Brain Function

Although not a major part of this thesis atypical brain function in autism is also briefly explored
by means of EEG. Several studies have shown atypical power spectral density patterns in the
EEG frequency bands of individuals with autism. We hypothesized that altered morphology, as
outlined in Chapters 2-4, would ultimately lead to alterations in functional organization. In
addition, we speculated that the spectral density differences observed in the autism literature
might in fact be sustained by alterations in functional connectivity. There is a large and growing
body of literature outlining theories of altered functional connectivity in autism that has been
reviewed in detail elsewhere (Vissers et al., 2012). In the present study, we utilized EEG to
study potential difference in connectivity, as measured by the weighted phase lag index (WPLI),

as a potential underlying mechanism for altered power spectral density.
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1.7 Acute effect of hormones on intrinsic brain functioning

The third factor, that of hormonal influences, is addressed in Chapters 6 and 7. As briefly
discussed in Chapter 4 in relation to effects of biological sex, hormones might play a pivotal
role in autism. They have however, a much wider role to play social behaviour. We focused
specifically on two hormones and their effects on functional connectivity: oxytocin and

testosterone.

The peptide hormone oxytocin has often been speculated as a ‘natural’ treatment for namely
the social difficulties associated with autism (Meyer-Lindenberg, Domes, Kirsch, & Heinrichs,
2011). In popular culture it has even been termed the ‘love’, ‘trust’ or ‘cuddle’ hormone.
Although early studies have shown some generally positive effects to social behaviour in autism
(Auyeung et al., 2015), the field in general is riddled with paradoxes of positive and negative
effects (Bethlehem, Baron-Cohen, van Honk, Auyeung, & Bos, 2014). Part of this
heterogeneity and apparent contradictory body of work might be resolved by gaining a better
understanding of oxytocins baseline effect on the brain. Specifically, it may influence various
human behaviours by altering brain network dynamics (Bethlehem, van Honk, Auyeung, &
Baron-Cohen, 2013). Previous oxytocin studies are largely male-biased and often constrained
by task-based inferences. In Chapter 6 we thus investigated the impact of oxytocin on resting
state connectivity between subcortical and cortical networks in women. We collected resting
state fMRI data on 26 typically-developing women 40 minutes following intranasal oxytocin
administration using a double-blind placebo-controlled crossover design. Independent
components analysis (ICA) was applied to examine connectivity between networks. An
independent analysis of oxytocin receptor (OXTR) gene expression in human subcortical and

cortical areas was carried out to determine plausibility of direct oxytocin effects on OXTR
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The second hormone we investigated was testosterone. Testosterone has often been speculated
to play an important role in autism given that the condition is male based and finds some
indications of what could be described as ‘extremely male brain phenotype’ (Baron-Cohen,
2002). It was recently shown that part of these characteristics might be driven by prenatal over-
exposure to steroidogenic hormones such as testosterone (Baron-Cohen et al., 2015). Within
the framework of the present research it was unfortunately not possible to specifically
investigate the direct effect of pre-natal testosterone on brain morphology. However, others
have already shown that it can have profound effects on grey matter morphology in a sexually
dimorphic way (Auyeung, Lombardo, & Baron-cohen, 2013; Lombardo, Ashwin, Auyeung,
Chakrabarti, Taylor, et al., 2012) as well as more general effect on brain connectivity and
organization (Koolschijn, Peper, & Crone, 2014; Peper, Koolschijn, & Ce, 2012; Peper, van
den Heuvel, Mandl, Pol, & van Honk, 2011). Outside of the influence during brain development
testosterone is known to have acute effects on social behaviour (Bos, Panksepp, Bluthé, & van
Honk, 2012; Van Honk et al., 2012; van Honk, Bos, & Terburg, 2014). Within the framework
of the present research it is interesting to note that testosterone and oxytocin have been
speculated to have broadly opposing effects on brain dynamics (Bos et al., 2012). Specifically,
recent evidence suggests that testosterone can decrease the functional coupling between
orbitofrontal cortex (OFC) and amygdala (van Wingen, Mattern, Verkes, Buitelaar, &
Fernandez, 2010; Volman et al., 2016; Volman, Toni, Verhagen, & Roelofs, 2011).
Theoretically this decoupling has been linked to a testosterone-driven increase of goal-directed
behaviour in case of threat, but this has never been studied directly. In addition, much like
oxytocin, testosterones effects have often been speculated to be context dependent (van Honk,

Terburg, et al., 2011). Thus, in addition to studying testosterone in this very specific context of
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goal-directed threat behaviour, we also sought to assess its basic effect on resting-state brain

activation and connectivity in a placebo-controlled crossover administration study.

1.8 Framework

As disparate as these three factors (genetic, hormones and sex) might seem they are all
interconnected. Like cogs in the big wheel of human behaviour (Figure 1.1).
Neurodevelopmental conditions such as autism or ADHD provide a unique window into these
interactions as they show where some interactions might have been atypical. Although it is
beyond the scope of any thesis to analyse the totality of this framework and all its interactions

we sought to highlight some of them.

&

MICRO MACRO )

Figure 1.1: Framework
Numbers denote chapters in this thesis, letters denote the 3 main elements of the framework presently being

discussed (A: Genes B: Gender C: Hormones). Thus; Chapter 2 discussed brain morphology in atypical
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development, Chapter 3 discusses the influences of genes on this altered morphology, Chapter 4 discusses the
interaction between biological sex and atypical development, Chapter 5 discusses potential altered brain function
in atypical development, Chapter 6 discusses how hormones interaction with brain function to potentially alter
behaviour in a manner that interacts with atypical development, and lastly Chapter 7 discusses how hormones can

operate in a narrow and specific context to modify behaviour.
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Chapter 2 Altered structural brain organization

in atypical development

2.1 Introduction

Autism is characterized by deficits in social communication alongside unusually restricted
interests and repetitive behaviours, difficulties adjusting to unexpected change, and sensory
hypersensitivity (American Psychiatric Association, 2013). Despite a large body of research to
understand its underlying neurobiology (Loth et al., 2015), no distinct set of biomarkers for
autism has yet been established. With respect to the neuroimaging literature and specifically
network organization, several authors have suggested potential differences in brain
organization in autism compared to neurotypical control groups with little consensus. There is
for example debate about whether autism is characterized by neural over- or under-connectivity
(Belmonte et al., 2004; Brock, Brown, Boucher, & Rippon, 2002; Courchesne & Pierce, 2005;
Just, Cherkassky, Keller, & Minshew, 2004; Rubenstein & Merzenich, 2003). A now widely
discussed hypothesis is that people with autism suffer from atypical connectivity (Assaf et al.,
2010; Cherkassky, Kana, Keller, & Just, 2006; Courchesne & Pierce, 2005; Just, Cherkassky,
Keller, Kana, & Minshew, 2007). Specifically, there is a tendency for autism to be associated
with excess local or short-range connectivity, relating to enhanced local processing. This is
thought to be accompanied by decreased global or long-range connectivity, relating to impaired
integration as manifested in ‘weak central coherence’. Thus, a prominent theory of neural
connectivity in autism is of global under- and local over-connectivity (Belmonte et al., 2004;

Vissers et al., 2012). Other, more recent theories have pointed towards more network dependent
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18 Altered structural brain organization in atypical development

levels of dysconnectivity. Zielinski et al. (2012) reported a connectivity reduction in the
salience network and posterior regions of the DMN, whereas they report frontal DMN regions
to be over-connected. This notion of network dependent alterations was recently confirmed by
a large structural covariance study in the ABIDE dataset (Long, Duan, Chen, Zhang, & Chen,
2016). Interestingly, Long and colleagues also show how this network dependency seems to
change with age. Lastly, regional covariance alterations in autism have also been demonstrated
to persist in white matter microstructure (Dean et al., 2016). Dean and colleagues show an
overall decreased coherence in individuals with autism that might suggest a broader pattern of

dysconnectivity.

ADHD on the other hand is characterised by a triad of symptoms: hyperactivity, impulsive
behaviour and inattentiveness (American Psychiatric Association, 2013). Studies using
connectivity analyses have attempted to shed light on its underlying neurobiology and have
found both decreased and increased functional connectivity in specific networks (Tomasi &
Volkow, 2012), altered connectivity in the default mode network (DMN) (Fair et al., 2010) and
differences in cross-network interactions (Cai, Chen, Szegletes, Supekar, & Menon, 2015).

These effects might be smaller than the literature suggests (Mostert et al., 2016).

Autism and ADHD show high comorbidity and phenotypic overlap (Leitner et al., 2014;
Rommelse et al., 2010; Rommelse, Geurts, Franke, Buitelaar, & Hartman, 2011), and are both
also potentially marked by differences in connectivity. There have even been suggestions that
these connectivity differences lie on a similar dimension of local and global connectivity
imbalances (Kern et al., 2015). In addition, both conditions have been associated with

alterations in cortical development (Hardan, Libove, Keshavan, Melhem, & Minshew, 2009;
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Shaw et al., 2007) that could in turn give rise to differences in the topological organisation of
brain networks. In the present study, we aimed to identify distinct as well as overlapping
patterns of brain organisation that might shed a light on the underlying architecture of both

conditions, giving rise to divergent yet related findings using structural covariance analyses.

Structural covariance analysis involves covarying inter-individual differences (i.e. coordinated
variations in grey matter morphology) in neural anatomy across groups (Alexander-Bloch ef
al.,2013; Evans, 2013) and is emerging as an efficient approach for assessing structural brain
organization. A key assumption underlying this methodology is that morphological correlations
are related to axonal connectivity between brain regions, with shared trophic, genetic, and
neurodevelopmental influences (Alexander-Bloch et al., 2013). Thus, structural covariance
network analysis is not the same as analysis of functional connectivity or structural networks
obtained with diffusion imaging, yet it has shown moderately strong overlap with both
(Alexander-Bloch ef al., 2013; Gong et al., 2012). In addition, structural covariance networks
are highly heritable (Schmitt et al., 2009) and follow a pattern of coordinated maturation
(Alexander-Bloch et al., 2013; Raznahan et al., 2011; Zielinski ef al., 2010). With respect to
neurodevelopmental conditions, structural covariance networks might provide a way to
investigate potential differences in brain network development. Differences between
neurotypical individuals and individuals with a developmental condition are likely the result of
divergent developmental trajectories in coordinated development of different brain networks.
The advantage of structural covariance analysis is that it focuses on this coordinated structure
of the entire brain as opposed to focusing on a specific structure. In addition, structural data on
which these networks are based are widely available, analysis is less computationally intensive

and arguably less sensitive to noise, compared to functional imaging.
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Previous investigations of structural covariance in autism have shown regional or nodal
decrease in centrality, particularly in key regions subserving social and sensorimotor
processing, compared to neurotypical individuals (Balardin et al., 2015). Furthermore, speech
and language impairments in autism have been associated with differences in structural
covariance properties (Sharda, Khundrakpam, Evans, & Singh, 2014). Studies of functional
connectivity networks in autism are more abundant (Vissers et al., 2012). In ADHD, structural
covariance analyses have been scarce. A study that specifically investigated structural
covariance in drug-naive adolescent males found that grey matter volume covariance was
significantly reduced between multiple brain regions including: insula and right hippocampus,
and between the orbito-frontal cortices (OFC) and bilateral caudate (Li et al., 2015). Similar to
the autism literature, studies that have explored functional connectivity differences in ADHD

are more abundant (Konrad & Eickhoft, 2010).

While autism and ADHD are considered distinct conditions from a diagnostic perspective,
clinically they share some common phenotypic features (such as social difficulties, atypical
attentional patterns, and executive dysfunction) and have high comorbidity (Leitner et al., 2014;
Rommelse et al., 2010, 2011). DSM-5 (American Psychiatric Association, 2013) now allows
comorbid diagnosis of autism and ADHD, acknowledging the common co-occurrence of these
conditions. Regardless, most studies to date have focused on each condition separately, with
considerable heterogeneity in results. Taking a dual-condition approach might help elucidate
sha